
Vishay Siliconix

Power MOSFET

PRODUCT SUMMARY						
V _{DS} (V)	- 200 V					
R _{DS(on)} (Max.) (Ω)	$V_{GS} = -10 V$	0.50				
Q _g (Max.) (nC)	44					
Q _{gs} (nC)	7.1					
Q _{gd} (nC)	27					
Configuration	Single					

FEATURES

- Dynamic dV/dt Rating
- Repetitive Avalanche Rated
- P-Channel
- Isolated Central Mounting Hole
- Fast Switching
- · Ease of Paralleling
- Simple Drive Requirements
- Compliant to RoHS Directive 2002/95/EC

DESCRIPTION

Third generation Power MOSFETs from Vishay provide the designer with the best combination of fast switching, ruggedized device design, low on-resistance and cost-effectiveness.

The TO-247AC preferred package for is commercial-industrial applications where higher power levels preclude the use of TO-220AB devices. The TO-247AC is similar but superior to the earlier TO-218 package because of its isolated mounting hole. It also provides greater creepage distance between pins to meet the requirements of most safety specifications.

ORDERING INFORMATION				
Package	TO-247AC			
Lead (Pb)-free	IRFP9240PbF			
Leau (FD)-fiee	SiHFP9240-E3			
SnPb	IRFP9240			
SIFD	SiHFP9240			

ABSOLUTE MAXIMUM RATINGS (T _C PARAMETER	SYMBOL	LIMIT	UNIT		
Drain-Source Voltage			- 200		
Gate-Source Voltage	V _{DS} V _{GS}	± 20	- V		
Continuous Drain Current	V_{GS} at - 10 V $T_{C} = 25$ $T_{C} = 100$	°C _	- 12		
	$V_{GS} at = 10 V$ $T_{C} = 100$	°C I _D	- 7.5	А	
Pulsed Drain Current ^a	I _{DM}	- 48			
Linear Derating Factor			1.2	W/°C	
Single Pulse Avalanche Energy ^b			790	mJ	
Repetitive Avalanche Current ^a			- 12	А	
Repetitive Avalanche Energy ^a	E _{AR}	15	mJ		
Maximum Power Dissipation	T _C = 25 °C	PD	150	W	
Peak Diode Recovery dV/dt ^c	dV/dt	- 5.0	V/ns		
Operating Junction and Storage Temperature Range			- 55 to + 150	°C	
Soldering Recommendations (Peak Temperature)		300 ^d	U		
Mounting Torque	6-32 or M3 screw		10	lbf ⋅ in	
	0-52 OF MIS SCIEW		1.1	N · m	

Notes

a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. $V_{DD} = -50$ V, starting $T_J = 25$ °C, L = 8.2 mH, $R_g = 25 \Omega$, $I_{AS} = -12$ A (see fig. 12). c. $I_{SD} \le -12$ A, dI/dt ≤ 150 A/µs, $V_{DD} \le V_{DS}$, $T_J \le 150$ °C. d. 1.6 mm from case.

* Pb containing terminations are not RoHS compliant, exemptions may apply

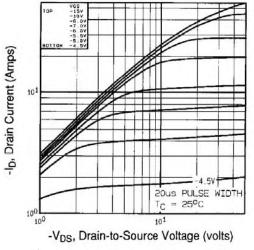
Document Number: 91239 S11-0444-Rev. B, 14-Mar-11 www.vishay.com

RoHS COMPLIANT

Vishay Siliconix

THERMAL RESISTANCE RATI	NGS								
PARAMETER	SYMBOL	TYP		MAX.		UNIT			
Maximum Junction-to-Ambient	R _{thJA}	-		40					
Case-to-Sink, Flat, Greased Surface	R _{thCS}	0.24 -			°C/W				
Maximum Junction-to-Case (Drain)	R _{thJC}	- 0.83							
SPECIFICATIONS (T _J = 25 $^{\circ}$ C, u	nless otherw	ise noted)							
PARAMETER	SYMBOL	TES		IONS	$ \begin{array}{c c c c c c c } \hline & & & & & & & & & & & & & & & & & & $				
Static									
Drain-Source Breakdown Voltage	V _{DS}	$\frac{V_{GS} = 0 \text{ V}, \text{ I}_{D} = -250 \mu\text{A}}{P_{TJ}} = -200 $		V					
V _{DS} Temperature Coefficient	$\Delta V_{DS}/T_{J}$	Image: second		V/°C					
Gate-Source Threshold Voltage	V _{GS(th)}	V _{DS} =	V_{GS} , $I_D = -$	250 µA	- 2.0	-	- 4.0	V	
Gate-Source Leakage	I _{GSS}		$V_{GS} = \pm 20$	V	-	-	± 100	nA	
Zero Gate Voltage Drain Current	Inco	$V_{DS} =$	- 200 V, V _G	_{iS} = 0 V	-	-	- 100	ıιΔ	
Zero Gale voltage Drain Gurrent	I _{DSS}	V _{DS} = - 160 V	V, $V_{GS} = 0$ V	/, T _J = 125 °C	-	-	- 500	μΛ	
Drain-Source On-State Resistance	R _{DS(on)}	V _{GS} = - 10 V I _D = - 7.2 A ^b		-	-	0.50	Ω		
Forward Transconductance	9 _{fs}	V _{DS} = - 50 V, I _D = - 7.2 A		4.2	-	-	S		
Dynamic									
Input Capacitance	C _{iss}		$V_{CS} = 0 V.$		-	1200	-		
Output Capacitance	C _{oss}	$V_{DS} = -25 V,$		-	370	-	pF		
Reverse Transfer Capacitance	C _{rss}	f = 1.	.0 MHz, see	e fig. 5	-	81	-		
Total Gate Charge	Qg				-	-	44		
Gate-Source Charge	Q _{gs}				-	-	7.1	nC	
Gate-Drain Charge	Q _{gd}			5	-	-	27		
Turn-On Delay Time	t _{d(on)}		•		-	14	-		
Rise Time	t _r			-	43	-	1		
Turn-Off Delay Time	t _{d(off)}				-	39	-	ns	
Fall Time	t _f		-		-	38	-		
Internal Drain Inductance	L _D	Between lead 6 mm (0.25") f	from		-	5.0	-	2 4	
Internal Source Inductance	L _S	package and die contact	center of		-	13	-	- nH	
Drain-Source Body Diode Characteristic	cs								
Continuous Source-Drain Diode Current	١ _S	MOSFET symbol showing the		-	-	- 12	А		
Pulsed Diode Forward Current ^a	I _{SM}	integral revers p - n junction			-	-	- 48		
Body Diode Voltage	V_{SD}	T _J = 25 °C,	, I _S = - 12 A	, $V_{GS} = 0 V^{b}$	-	-	- 5.0	V	
Body Diode Reverse Recovery Time	t _{rr}	T ₁ = 25 °C I ₂	=-11 A ମା	/dt = 100 A/µs ^b	-	250	300	ns	
Body Diode Reverse Recovery Charge	Q _{rr}	1J - 20 0, IF	– 11 A, Ul	αι – 100 Αγμο-	-	2.9	3.6	μC	
Forward Turn-On Time	t _{on}	Intrinsic tu	rn-on time	is negligible (turn	-on is dor	ninated b	y L _S and	L _D)	

Notes


a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).

b. Pulse width $\leq 300~\mu s;$ duty cycle $\leq 2~\%.$

www.vishay.com 2 Document Number: 91239 S11-0444-Rev. B, 14-Mar-11

Vishay Siliconix

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

Fig. 1 - Typical Output Characteristics, T_C = 25 °C

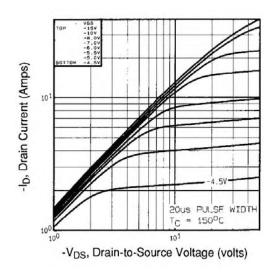


Fig. 2 - Typical Output Characteristics, T_C = 150 °C

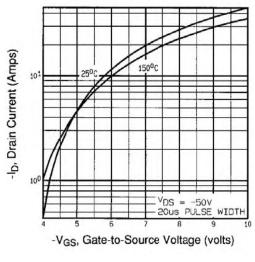


Fig. 3 - Typical Transfer Characteristics

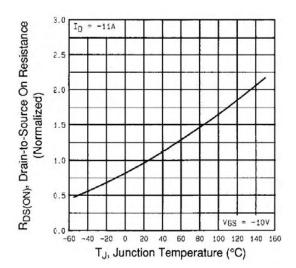


Fig. 4 - Normalized On-Resistance vs. Temperature

www.vishay.com

Vishay Siliconix

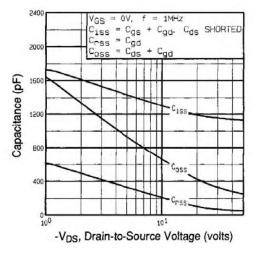


Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage

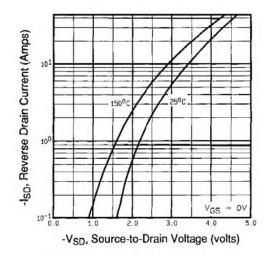


Fig. 7 - Typical Source-Drain Diode Forward Voltage

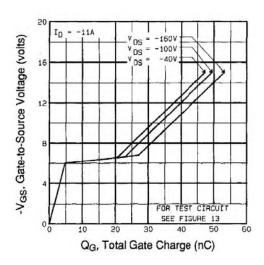


Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage

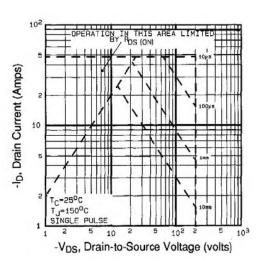


Fig. 8 - Maximum Safe Operating Area

Document Number: 91239 S11-0444-Rev. B, 14-Mar-11

Vishay Siliconix

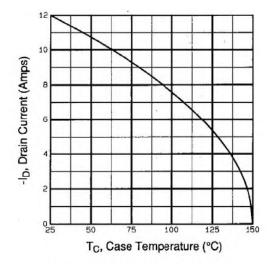


Fig. 9 - Maximum Drain Current vs. Case Temperature

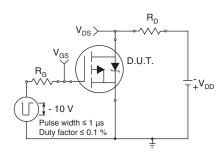


Fig. 10a - Switching Time Test Circuit

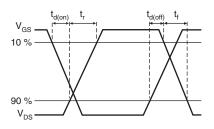


Fig. 10b - Switching Time Waveforms

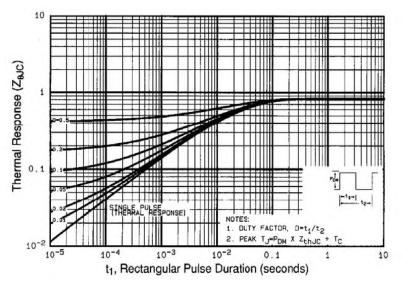


Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case

Vishay Siliconix

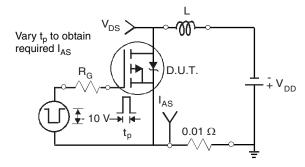


Fig. 12a - Unclamped Inductive Test Circuit

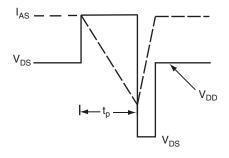


Fig. 12b - Unclamped Inductive Waveforms

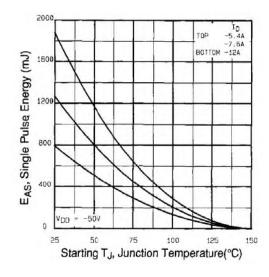


Fig. 12c - Maximum Avalanche Energy vs. Drain Current

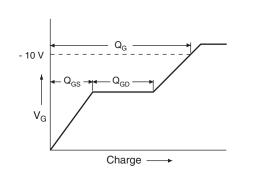
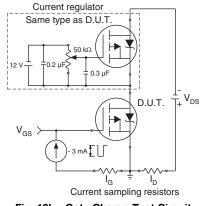
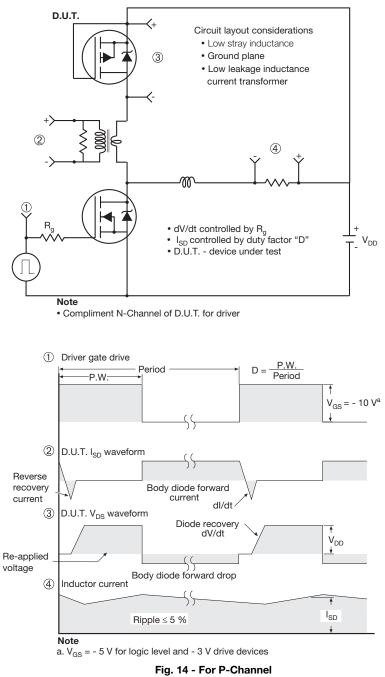


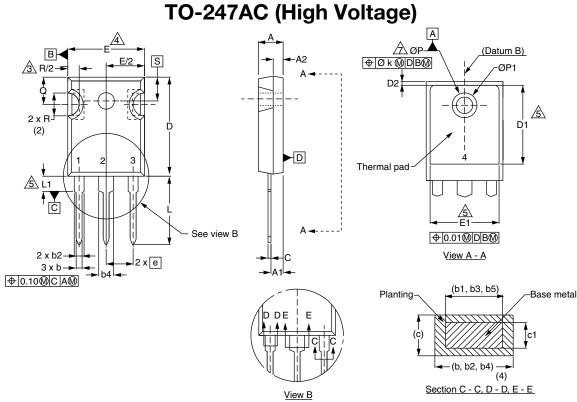
Fig. 13a - Basic Gate Charge Waveform




Fig. 13b - Gate Charge Test Circuit

www.vishay.com 6 Document Number: 91239 S11-0444-Rev. B, 14-Mar-11

Vishay Siliconix



Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?91239.

Document Number: 91239 S11-0444-Rev. B, 14-Mar-11 www.vishay.com

⁷

Vishay Siliconix

DIM.	MILLIMETERS		INCHES			MILLIMETERS		INCHES			
	MIN.	MAX.	MIN.	MAX.	DIM.	MIN.	MAX.	MIN.	MAX		
Α	4.58	5.31	0.180	0.209	D2	0.51	1.30	0.020	0.05		
A1	2.21	2.59	0.087	0.102	E	15.29	15.87	0.602	0.62		
A2	1.17	2.49	0.046	0.098	E1	13.72	-	0.540	-		
b	0.99	1.40	0.039	0.055	е	5.46 BSC		0.215 BSC			
b1	0.99	1.35	0.039	0.053	Øk	0.254		0.254 0.010		010	
b2	1.53	2.39	0.060	0.094	L	14.20	16.25	0.559	0.64		
b3	1.65	2.37	0.065	0.093	L1	3.71	4.29	0.146	0.16		
b4	2.42	3.43	0.095	95 0.135 N 7.62 BSC		0.095 0.135 N 7.62 BSC		7.62 BSC		7.62 BSC 0.300 BSC	
b5	2.59	3.38	0.102	0.133	ØΡ	3.51	3.66	0.138	0.14		
С	0.38	0.86	0.015	0.034	Ø P1	-	7.39	-	0.29		
c1	0.38	0.76	0.015	0.030	Q	5.31	5.69	0.209	0.22		
D	19.71	20.82	0.776	0.820	R	4.52	5.49	0.178	0.21		
D1	13.08	-	0.515	-	S	5.51 BSC		0.217 BSC			

Notes

1. Dimensioning and tolerancing per ASME Y14.5M-1994.

www.vishay.com

2. Contour of slot optional.

Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outermost extremes of the plastic body.

4. Thermal pad contour optional with dimensions D1 and E1.

5. Lead finish uncontrolled in L1.

6. Ø P to have a maximum draft angle of 1.5 to the top of the part with a maximum hole diameter of 3.91 mm (0.154").

7. Outline conforms to JEDEC outline TO-247 with exception of dimension c.

8. Xian and Mingxin actually photo.

XIAN MINGXIN

Revision: 24-Sep-12

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.