

74ALS651/74ALS651-1 74ALS652/74ALS652-1 Transceiver/register

PHILIPS

Transceiver/register

74ALS651/651-1 Octal transceiver/register, inverting (3-State)
74ALS652/652-1 Octal transceiver/register, non-inverting (3-State)

FEATURES

- Independent registers for A and B buses
- Multiplexed real-time and stored data
- Choice of non-inverting and inverting data paths
- 3-State outputs
- The -1 versions sinks 48 mA lol within the $\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$ range

DESCRIPTION

The 74LAS651 and 74ALS652 transceivers/registers consist of bus transceiver circuits with 3-State outputs, D-type flip-flops, and control circuitry arranged for multiplexed transmission of data directly from the input bus or the internal registers. Data on the A or B bus will be clocked into the registers as the appropriate clock pin goes High. Output enable (OEAB, OEBA) and select (SAB, SBA)

TYPE	TYPICAL $\mathrm{f}_{\text {MAX }}$	TYPICAL SUPPLY CURRENT (TOTAL)
$74 \mathrm{ALS651/74ALS651-1}$	140 MHz	40 mA
$74 \mathrm{ALS652/74ALS652-1}$	140 MHz	46 mA

ORDERING INFORMATION

DESCRIPTION	ORDER CODE	DRAWING NUMBER
	$\begin{gathered} \text { COMMERCIAL RANGE } \\ V_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \\ \mathrm{~T}_{\mathrm{amb}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{gathered}$	
24-pin plastic DIP	74ALS651N, 74ALS651-1N, 74ALS652N, 74ALS652-1N	SOT222-1
24-pin plastic SOL	74ALS651D, 74ALS651-1D, 74ALS652D, 74ALS652-1D	SOT137-1

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74ALS (U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
A0 - A7	A inputs	$1.0 / 1.0$	$70 \mu \mathrm{~A} / 0.1 \mathrm{~mA}$
B0 - B7	B inputs	$1.0 / 1.0$	$70 \mu \mathrm{~A} / 0.1 \mathrm{~mA}$
CPAB	A-to-B clock input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.1 \mathrm{~mA}$
CPBA	B-to-A clock input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.1 \mathrm{~mA}$
SAB	A-to-B select input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.1 \mathrm{~mA}$
SBA	B-to-A select input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.1 \mathrm{~mA}$
OEAB	A-to-B output enable input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.1 \mathrm{~mA}$
OEBA	B-to-A output enable input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.1 \mathrm{~mA}$
A0 - A7, B0 - B7	A, B outputs	$750 / 240$	$15 \mathrm{~mA} / 24 \mathrm{~mA}$
A0 - A7, B0 - B7	A, B outputs (-1 version)	$750 / 480$	$15 \mathrm{~mA} / 48 \mathrm{~mA}$

NOTE: One (1.0) ALS unit load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.1 mA in the Low state.

PIN CONFIGURATION - 74ALS651/651-1

LOGIC SYMBOL - 74ALS651/651-1

IEC/IEEE SYMBOL - 74ALS651/651-1

PIN CONFIGURATION - 74ALS652/652-1

LOGIC SYMBOL - 74ALS652/652-1

IEC/IEEE SYMBOL - 74ALS652/652-1

BUS MANAGEMENT FUNCTIONS

The following examples demonstrate the four fundamental bus-management functions that can be performed with the 74ALS651/74ALS651-1 and 74ALS652/74ALS652-1. The select pins determine whether data is stored or transferred through the device in real time. The output enable pins determine the direction of the data flow.

LOGIC DIAGRAM - 74ALS651/651-1

LOGIC DIAGRAM - 74ALS652/652-1

FUNCTION TABLE

INPUTS									
OEAB	OEBA	CPAB	CPBA	SAB	SBA	An	Bn	D4ALS651/74ALS651-1	74ALS652/74ALS652-1
L	H	H or L	H or L	X	X	Input	Input	Isolation	Isolation
L	H	\uparrow	\uparrow	X	X	Input	Input	Store A and B data	Store A and B data
X	H	\uparrow	H or L	X	X	Input	Unspecified	Store A, hold B	Store A, hold B
H	H	\uparrow	\uparrow	L	X	Input	Output	Store A in both registers	Store A in both registers
L	X	H or L	\uparrow	X	S	Unspecified*	Input	Hold A, store B	Hold A, store B
L	L	\uparrow	\uparrow	X	L	Output	Input	Store B in both registers	Store B in both registers
L	L	X	X	X	L	Output	Input	Real time \bar{B} data to A bus	Real time \bar{B} data to A bus
L	L	X	H or L	X	H	Output	Input	Stored \bar{B} data to A bus	Stored B data to A bus
H	H	X	X	L	X	Input	Output	Real time \bar{A} data to B bus	Real time A data to B bus
H	H	H or L	X	H	X	Input	Output	Stored \bar{A} data to B bus	Stored A data to B bus
H	L	H or L	H or L	H	H	Output	Output	Stored \bar{A} data to B bus	Stored A data to B bus
H	L	H or L	H or L	H	H	Output	Output	Stored \bar{B} data to A bus	Stored B data to A bus

NOTES:

$\mathrm{H}=$ High voltage level
$\mathrm{L}=$ Low voltage level
X = Don't care

* = The data output function may be enabled or disabled by various signals at the $\overline{O E}$ and DIR inputs. Data input functions are always enabled, i.e., data at the bus pins will be stored on every Low-to-High transition of the clock.
$\uparrow=$ Low-to-High clock transition

ABSOLUTE MAXIMUM RATINGS

(Operation beyond the limit set forth in this table may impair the useful life of the device.
Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
V_{CC}	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\mathrm{IN}}$	Input voltage	-0.5 to +7.0	V
I_{IN}	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to V_{CC}	V
$\mathrm{I}_{\text {OUT }}$	Current applied to output in Low output state	48	mA
		All versions	-1 version
$\mathrm{T}_{\text {amb }}$	Operating free-air temperature range	96	mA
$\mathrm{~T}_{\text {stg }}$	Storage temperature range	0 to +70	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		LIMITS			UNIT
			MIN	NOM	MAX	
V_{CC}	Supply voltage		4.5	5.0	5.5	V
V_{IH}	High-level input voltage		2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage				0.8	V
I_{K}	Input clamp current				-18	mA
$\mathrm{IOH}^{\text {l }}$	High-level output current				-15	mA
${ }^{\text {IOL }}$	Low-level output current	All versions			24	mA
		-1 version			$48{ }^{1}$	mA
$\mathrm{T}_{\text {amb }}$	Operating free-air temperature range		0		+70	${ }^{\circ} \mathrm{C}$

NOTE:

1. The 48 mA limit applies only under the condition of $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%$.

DC ELECTRICAL CHARACTERISTICS

(Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER			TEST CONDITIONS ${ }^{1}$		LIMITS			UNIT		
				MIN	TYP ${ }^{2}$	MAX					
V_{OH}	High-level output voltage					$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \pm 10 \%, \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX}, \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN} \end{aligned}$	$\mathrm{I}_{\mathrm{OH}}=-0.4 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}-2$			V
				$\mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}$	2.4		3.2		V		
				$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX}, \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN} \end{aligned}$	$\mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA}$	2.0			V		
$\mathrm{V}_{\text {OL }}$	Low-level output voltage	All versions		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX}, \\ & \mathrm{~V}_{\mathrm{H}}=\mathrm{MIN} \end{aligned}$	$\mathrm{l}_{\mathrm{OL}}=12 \mathrm{~mA}$		0.25	0.40	V		
				$\mathrm{l}_{\mathrm{OL}}=24 \mathrm{~mA}$		0.35	0.50	V			
		-1 versions			$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX}, \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN} \end{aligned}$	$\mathrm{l}_{\mathrm{OL}}=48 \mathrm{~mA}$		0.35	0.50	V	
V_{IK}	Input clamp voltage			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=\mathrm{I}_{\mathrm{I}} \mathrm{K}$			-0.73	-1.5	V		
1	Input current at maximum input voltage	control inputs		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$				0.1	mA		
		A or B ports		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$				0.1	mA		
$\mathrm{IIH}^{\text {H }}$	High-level input current ${ }^{3}$			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$		
$1 / \mathrm{L}$	Low-level input current ${ }^{3}$			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V}$				-0.1	mA		
Io	Output current ${ }^{4}$			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=2.25 \mathrm{~V}$		-30		-112	mA		
ICC	Supply current (total)	74ALS651/ 74ALS651-1	$\mathrm{I}_{\mathrm{CCH}}$	$V_{C C}=$ MAX			32	50	mA		
			$\mathrm{I}_{\mathrm{CCL}}$				45	68	mA		
			$\mathrm{I}_{\mathrm{CCZ}}$				44	68	mA		
		74ALS652/ 74ALS652-1	$\mathrm{I}_{\mathrm{CCH}}$	$V_{C C}=M A X$			36	58	mA		
			$\mathrm{I}_{\text {CCL }}$				53	78	mA		
			$\mathrm{I}_{\text {CCZ }}$				49	72	mA		

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.
3. For I/O ports, the parameter I_{H} and I_{IL} include the off-state current.
4. The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, los.

AC ELECTRICAL CHARACTERISTICS FOR 74ALS651/74ALS651-1

SYMBOL	PARAMETER	TEST CONDITION	LIMITS		UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			MIN	MAX	
$\mathrm{f}_{\text {max }}$	Maximum clock frequency	Waveform 1	100		MHz
$\begin{aligned} & \text { tpLH } \\ & t_{\text {PHLL }} \\ & \hline \end{aligned}$	Propagation delay CPBA to An, CPAB to Bn	Waveform 1	$\begin{aligned} & \hline 5.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & \hline 13.0 \\ & 13.0 \\ & \hline \end{aligned}$	ns
$\overline{t P L H}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation delay An to Bn or Bn to An	Waveform NO TAG, 3	$\begin{aligned} & 1.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & \hline 7.0 \\ & 9.0 \end{aligned}$	ns
$\begin{aligned} & \text { tpLH } \\ & t_{\text {PPHL }} \end{aligned}$	Propagation delay SBA to An or SAB to Bn (A or B Low)	Waveform NO TAG, 3	$\begin{aligned} & \hline 6.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \hline 14.0 \\ & 11.0 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay SBA to An or SAB to Bn (A or B High)	Waveform NO TAG, 3	$\begin{aligned} & 4.0 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 11.0 \\ & 12.0 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZLL}} \\ & \hline \end{aligned}$	Output enable time OEBA to An	Waveform 7 Waveform 8	$\begin{aligned} & \hline 2.0 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 8.0 \\ 12.0 \end{gathered}$	ns
$\begin{aligned} & \text { tpHz } \\ & \text { tpLZ } \\ & \hline \end{aligned}$	Output disable time OEBA to An	Waveform 7 Waveform 8	$\begin{aligned} & 2.0 \\ & 3.0 \end{aligned}$	$\begin{gathered} \hline 8.0 \\ 10.0 \end{gathered}$	ns
$\begin{aligned} & \text { tpzH } \\ & \mathrm{t}_{\mathrm{pzL}} \\ & \hline \end{aligned}$	Output enable time OEAB to Bn	Waveform 7 Waveform 8	$\begin{aligned} & 2.0 \\ & 5.0 \end{aligned}$	$\begin{gathered} \hline 9.0 \\ 12.0 \end{gathered}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLLZ}} \\ & \hline \end{aligned}$	Output disable time OEAB to Bn	Waveform 7 Waveform 8	$\begin{aligned} & 3.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 11.0 \\ & 13.0 \end{aligned}$	ns

AC ELECTRICAL CHARACTERISTICS FOR 74ALS652/74ALS652-1

SYMBOL	PARAMETER	TEST CONDITION	LIMITS		UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			MIN	MAX	
$\mathrm{f}_{\text {max }}$	Maximum clock frequency	Waveform 1	100		MHz
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \\ & \hline \end{aligned}$	Propagation delay CPBA to An, CPAB to Bn	Waveform 1	$\begin{aligned} & \hline 5.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & \hline 13.0 \\ & 13.0 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay An to Bn or Bn to An	Waveform NO TAG, 3	$\begin{aligned} & 2.0 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.0 \\ & 9.0 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & \hline \text { tPLH } \\ & t_{\text {PHL }} \end{aligned}$	Propagation delay SBA to An or SAB to Bn (A or B Low)	Waveform NO TAG, 3	$\begin{aligned} & 4.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 11.0 \\ & 11.0 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay SBA to An or SAB to Bn (A or B High)	Waveform NO TAG, 3	$\begin{aligned} & 6.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 14.0 \\ & 11.0 \end{aligned}$	ns
$\begin{aligned} & \text { tpzH } \\ & \mathrm{t}_{\mathrm{pZLL}} \\ & \hline \end{aligned}$	Output enable time OEBA to An	Waveform 7 Waveform 8	$\begin{aligned} & 2.0 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 8.0 \\ 11.0 \end{gathered}$	ns
$\begin{aligned} & \text { tpHz } \\ & \text { tpLZ } \\ & \hline \end{aligned}$	Output disable time OEBA to An	Waveform 7 Waveform 8	$\begin{aligned} & 2.0 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 8.0 \\ & 10.0 \end{aligned}$	ns
$\begin{aligned} & \text { tpzH } \\ & \mathrm{t}_{\mathrm{pzL}} \\ & \hline \end{aligned}$	Output enable time OEAB to Bn	Waveform 7 Waveform 8	$\begin{aligned} & 2.0 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{gathered} 9.0 \\ 11.0 \end{gathered}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZZ}} \\ & \hline \end{aligned}$	Output disable time OEAB to Bn	Waveform 7 Waveform 8	$\begin{aligned} & \hline 3.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \hline 11.0 \\ & 13.0 \\ & \hline \end{aligned}$	ns

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITION	LIMITS		UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			MIN	MAX	
$\begin{aligned} & \mathrm{t}_{\mathrm{su}} \text { (H) } \\ & \mathrm{t}_{\mathrm{su}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low An or Bn to CPAB or CPBA	Waveform 4	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$		ns
$\begin{aligned} & \hline \mathrm{th}_{\mathrm{n}}(\mathrm{H}) \\ & \mathrm{th}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold time, High or Low An or Bn to CPAB or CPBA	Waveform 4	$\begin{aligned} & 0.0 \\ & 1.0 \end{aligned}$		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{su}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{su}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup time, High or Low ${ }^{1}$ OEBA to OEAB or OEAB to OEBA	Waveform 5, 6	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$		ns
$\begin{aligned} & \hline \mathrm{th}_{\mathrm{n}}(\mathrm{H}) \\ & \mathrm{th}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold time, High or Low OEBA to OEAB or OEAB to OEBA	Waveform 5, 6	$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$		ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Pulse width, High or Low CPAB or CPBA	Waveform 1	$\begin{aligned} & 6.0 \\ & 4.0 \end{aligned}$		ns

NOTE:

1. Setup time is to protect against current surge caused by enabling 16 outputs (24 mA per output) simultaneously.

AC WAVEFORMS

For all waveforms, $\mathrm{V}_{\mathrm{M}}=1.3 \mathrm{~V}$.
The shaded areas indicate when the input is permitted to change for predictable output performance.

Waveform 1. Propagation Delay for Clock Input to Output, Clock Pulse Width, and Maximum Clock Frequency

Waveform 3. Propagation Delay for An to Bn or Bn to An and SAB or SBA to An or Bn

Waveform 5. OEBA to OEAB Setup Time and Hold Times

Waveform 7. 3-State Output Enable Time to High Level and Output Disable Time from High Level

Waveform 2. Propagation Delay for An to Bn or Bn to An and SAB or SBA to An or Bn

Waveform 4. Data Setup Time and Hold Times

Waveform 6. OEAB to OEBA Setup Time and Hold Times

Waveform 8. 3-State Output Enable Time to Low Level and Output Disable Time from Low Level

TEST CIRCUIT AND WAVEFORMS

DIMENSIONS (millimetre dimensions are derived from the original inch dimensions)

UNIT	\mathbf{A} max.	$\mathbf{A}_{\mathbf{1}}$ $\mathbf{m i n}$.	$\mathbf{A}_{\mathbf{2}}$ max.	\mathbf{b}	$\mathbf{b}_{\mathbf{1}}$	\mathbf{c}	$\mathbf{D}^{(1)}$	$\mathbf{E}^{(1)}$	\mathbf{e}	$\mathbf{e}_{\mathbf{1}}$	\mathbf{L}	$\mathbf{M}_{\mathbf{E}}$	$\mathbf{M}_{\mathbf{H}}$	\mathbf{w}
mm	4.70	0.38	3.94	1.63 1.14	0.56 $\mathbf{m a x}$									
inches	0.43	0.36 0.25	31.9 31.5	6.73 6.48	2.54	7.62	3.51 3.05	8.13 7.62	10.03 7.62	0.25	2.05			

Note

1. Plastic or metal protrusions of 0.01 inches maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ		
SOT222-1		MS-001AF		\square (95-03-11

detail X

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	$\begin{gathered} \text { A } \\ \text { max. } \end{gathered}$	A_{1}	A_{2}	A_{3}	b_{p}	c	$\mathrm{D}^{(1)}$	$E^{(1)}$	e	H_{E}	L	L_{p}	Q	v	w	y	$z^{(1)}$	θ
mm	2.65	$\begin{aligned} & 0.30 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 2.45 \\ & 2.25 \end{aligned}$	0.25	$\begin{aligned} & 0.49 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.23 \end{aligned}$	$\begin{aligned} & 15.6 \\ & 15.2 \end{aligned}$	$\begin{aligned} & 7.6 \\ & 7.4 \end{aligned}$	1.27	$\begin{aligned} & 10.65 \\ & 10.00 \end{aligned}$	1.4	$\begin{aligned} & 1.1 \\ & 04 \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1.0 \end{aligned}$	0.25	0.25	0.1	0.9 0.4	$\begin{aligned} & 8^{\circ} \\ & 0^{\circ} \end{aligned}$
inches	0.10	$\begin{aligned} & 0.012 \\ & 0.004 \end{aligned}$	$\begin{aligned} & 0.096 \\ & 0.089 \end{aligned}$	0.01	$\begin{aligned} & 0.019 \\ & 0.014 \end{aligned}$	$\begin{aligned} & 0.013 \\ & 0.009 \end{aligned}$	$\begin{aligned} & 0.61 \\ & 0.60 \end{aligned}$	$\begin{aligned} & 0.30 \\ & 0.29 \end{aligned}$	0.050	$\begin{aligned} & 0.42 \\ & 0.39 \end{aligned}$	0.055	$\begin{aligned} & 0.043 \\ & 0.016 \end{aligned}$	$\begin{aligned} & 0.043 \\ & 0.039 \end{aligned}$	0.01	0.01	0.004	$\begin{aligned} & 0.035 \\ & 0.016 \end{aligned}$	

Note

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN	ISSUE DATE
	POC	JEDEC	EIAJ			
SOT137-1	$075 E 05$	MS-013AD			$-92-11-17$	

DEFINITIONS		
Data Sheet Identification	Product Status	Definition
Objective Specification	Formative or in Design	This data sheet contains the design target or goal specifications for product development. Specifications may change in any manner without notice.
Preliminary Specification	Preproduction Product	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.
Product Specification	Full Production	This data sheet contains Final Specifications. Philips Semiconductors reserves the right to make changes at any time without notice, in order to improve design and supply the best possible product.

Philips Semiconductors and Philips Electronics North America Corporation reserve the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified. Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

LIFE SUPPORT APPLICATIONS

Philips Semiconductors and Philips Electronics North America Corporation Products are not designed for use in life support appliances, devices, or systems where malfunction of a Philips Semiconductors and Philips Electronics North America Corporation Product can reasonably be expected to result in a personal injury. Philips Semiconductors and Philips Electronics North America Corporation customers using or selling Philips Semiconductors and Philips Electronics North America Corporation Products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors and Philips Electronics North America Corporation for any damages resulting from such improper use or sale.

Philips Semiconductors
811 East Arques Avenue
P.O. Box 3409

Sunnyvale, California 94088-3409
Telephone 800-234-7381

This datasheet has been download from:
www.datasheetcatalog.com
Datasheets for electronics components.

