June 1999

DAC0800/DAC0802 8-Bit Digital-to-Analog Converters General Description

The DAC0800 series are monolithic 8-bit high-speed current-output digital-to-analog converters (DAC) featuring typical settling times of 100 ns. When used as a multiplying DAC, monotonic performance over a 40 to 1 reference current range is possible. The DAC0800 series also features high compliance complementary current outputs to allow differential output voltages of 20 Vp-p with simple resistor loads as shown in *Figure 1*. The reference-to-full-scale current matching of better than \pm 1 LSB eliminates the need for full-scale trims in most applications while the nonlinearities of better than \pm 0.1% over temperature minimizes system error accumulations.

The noise immune inputs of the DAC0800 series will accept TTL levels with the logic threshold pin, V_{LC}, grounded. Changing the V_{LC} potential will allow direct interface to other logic families. The performance and characteristics of the device are essentially unchanged over the full ±4.5V to ±18V power supply range; power dissipation is only 33 mW with ±5V supplies and is independent of the logic input states.

The DAC0800, DAC0802, DAC0800C and DAC0802C are a direct replacement for the DAC-08, DAC-08A, DAC-08C, and DAC-08H, respectively.

Features

- Fast settling output current: 100 ns
- Full scale error: ±1 LSB
- Nonlinearity over temperature: ±0.1%
- Full scale current drift: ±10 ppm/°C
- High output compliance: -10V to +18V
- Complementary current outputs
- Interface directly with TTL, CMOS, PMOS and others
- 2 quadrant wide range multiplying capability
- Wide power supply range: ±4.5V to ±18V
- Low power consumption: 33 mW at ±5V
- Low cost

DS005686-1

FIGURE 1. ±20 V_{P-P} Output Digital-to-Analog Converter (Note 5)

Ordering Information

Non-Linearity	Temperature	Order Numbers								
	Range	J Package (J1	16A) (Note 1)	N Package (N	16E) (Note 1)	SO Package (M16A)				
±0.1% FS	$0^{\circ}C \le T_A \le +70^{\circ}C$	DAC0802LCJ	DAC-08HQ	DAC0802LCN	DAC-08HP	DAC0802LCM				
±0.19% FS	$-55^{\circ}C \le T_A \le +125^{\circ}C$	DAC0800LJ	DAC-08Q							
±0.19% FS	$0^{\circ}C \le T_A \le +70^{\circ}C$	DAC0800LCJ	DAC-08EQ	DAC0800LCN	DAC-08EP	DAC0800LCM				

Note 1: Devices may be ordered by using either order number.

Absolute Maximum Ratings (Note 2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage (V ⁺ – V ⁻)	±18V or 36V
Power Dissipation (Note 3)	500 mW
Reference Input Differential Voltage	
(V14 to V15)	V ⁻ to V ⁺
Reference Input Common-Mode	
Range (V14, V15)	V ⁻ to V ⁺
Reference Input Current	5 mA
Logic Inputs	V ⁻ to V ⁻ plus 36V
Analog Current Outputs	
$(V_{s} - = -15V)$	4.25 mA
ESD Susceptibility (Note 4)	TBD V

Storage Temperature	–65°C to +150°C
Lead Temp. (Soldering, 10 seconds)	
Dual-In-Line Package (plastic)	260°C
Dual-In-Line Package (ceramic)	300°C
Surface Mount Package	
Vapor Phase (60 seconds)	215°C
Infrared (15 seconds)	220°C

Operating Conditions (Note 2)

Min	Max	Units
-55	+125	°C
0	+70	°C
0	+70	°C
	-55 0	-55 +125 0 +70

Electrical Characteristics

The following specifications apply for $V_S = \pm 15V$, $I_{REF} = 2$ mA and $T_{MIN} \le T_A \le T_{MAX}$ unless otherwise specified. Output characteristics refer to both I_{OUT} and $\overline{I_{OUT}}$.

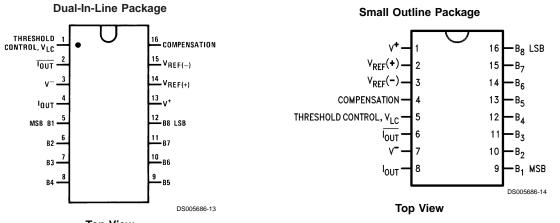
Symbol	Parameter	Conditions		DAC0802L	С		DAC0800L/ DAC0800LC			
Symbol	Falanetei	Conditions	Min	Тур	Max	Min	Тур	Max	Units	
	Resolution		8	8	8	8	8	8	Bits	
	Monotonicity		8	8	8	8	8	8	Bits	
	Nonlinearity		0	Ŭ	±0.1			±0.19	%FS	
ts	Settling Time	To ±1/2 LSB, All Bits Switched		100	135				ns	
۲S		"ON" or "OFF", T _A =25°C		100					115	
		DAC0800L					100	135	ns	
		DAC0800LC					100	150	ns	
tPLH,	Propagation Delay	T _A =25°C					100	100		
tPHL	Each Bit	1 _A -20 0		35	60		35	60	ns	
	All Bits Switched			35	60		35	60	ns	
TCI _{FS}	Full Scale Tempco			±10	±50		±10	±50	ppm/°C	
V _{OC}	Output Voltage Compliance	Full Scale Current Change	-10		18	-10		18	V	
.00	e alpar i enage e empirance	$<\frac{1}{2}$ LSB, R _{OUT} >20 MΩ Typ								
I _{FS4}			1.984	1.992	2.000	1.94	1.99	2.04	mA	
104		R15=5.000 kΩ, T _A =25°C				-				
I _{FSS}	Full Scale Symmetry	I _{FS4} -I _{FS2}		±0.5	±4.0		±1	±8.0	μA	
I _{ZS}	Zero Scale Current			0.1	1.0		0.2	2.0	μA	
I _{FSR}	Output Current Range	V ⁻ =-5V	0	2.0	2.1	0	2.0	2.1	mA	
		V ⁻ =-8V to -18V	0	2.0	4.2	0	2.0	4.2	mA	
	Logic Input Levels									
V _{IL}	Logic "0"	V _{LC} =0V			0.8			0.8	V	
V _{IH}	Logic "1"		2.0			2.0			V	
	Logic Input Current	V _{LC} =0V								
IIL	Logic "0"	–10V≦V _{IN} ≦+0.8V		-2.0	-10		-2.0	-10	μA	
I _{IH}	Logic "1"	2V≤V _{IN} ≤+18V		0.002	10		0.002	10	μA	
V _{IS}	Logic Input Swing	V ⁻ =-15V	-10		18	-10		18	V	
V _{THR}	Logic Threshold Range	V _S =±15V	-10		13.5	-10		13.5	V	
I ₁₅	Reference Bias Current			-1.0	-3.0		-1.0	-3.0	μA	
dl/dt	Reference Input Slew Rate	(Figure 11)	4.0	8.0		4.0	8.0		mA/µs	
PSSI _{FS+}	Power Supply Sensitivity	4.5V≤V ⁺ ≤18V		0.0001	0.01		0.0001	0.01	%/%	
PSSI _{FS-}		-4.5V≤V ⁻ ≤18V		0.0001	0.01		0.0001	0.01	%/%	
		I _{REF} =1mA								

DAC0800/DAC0802

Electrical Characteristics (Continued)

The following specifications apply for $V_S = \pm 15V$, $I_{REF} = 2$ mA and $T_{MIN} \le T_A \le T_{MAX}$ unless otherwise specified. Output characteristics refer to both I_{OUT} and $\overline{I_{OUT}}$.

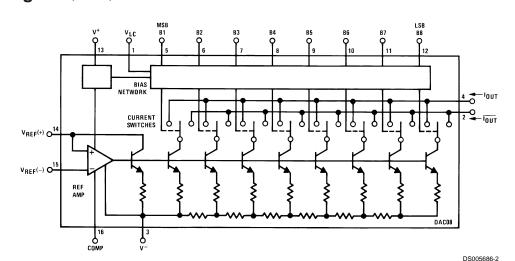
				DAC0802L	С					
Symbol	Parameter	Conditions					DAC0800LC			
			Min	Тур	Max	Min	Тур	Max		
	Power Supply Current	V _S =±5V, I _{REF} =1 mA								
l+				2.3	3.8		2.3	3.8	mA	
I–				-4.3	-5.8		-4.3	-5.8	mA	
		V _S =5V, -15V, I _{REF} =2 mA								
l+				2.4	3.8		2.4	3.8	mA	
I–				-6.4	-7.8		-6.4	-7.8	mA	
		V _S =±15V, I _{REF} =2 mA		1						
l+				2.5	3.8		2.5	3.8	mA	
I–				-6.5	-7.8		-6.5	-7.8	mA	
PD	Power Dissipation	±5V, I _{REF} =1 mA		33	48		33	48	mW	
		5V,-15V, I _{REF} =2 mA		108	136		108	136	mW	
		±15V, I _{REF} =2 mA		135	174		135	174	mW	


Note 2: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified operating conditions.

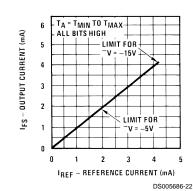
Note 3: The maximum junction temperature of the DAC0800 and DAC0802 is 125°C. For operating at elevated temperatures, devices in the Dual-In-Line J package must be derated based on a thermal resistance of 100°C/W, junction-to-ambient, 175°C/W for the molded Dual-In-Line N package and 100°C/W for the Small Outline M package.

Note 4: Human body model, 100 pF discharged through a 1.5 $k\Omega$ resistor.

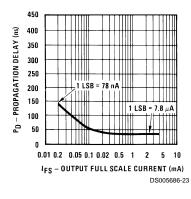
Note 5: Pin-out numbers for the DAC080X represent the Dual-In-Line package. The Small Outline package pin-out differs from the Dual-In-Line package.

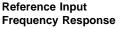

Connection Diagrams

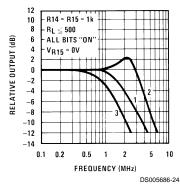
Top View


See Ordering Information

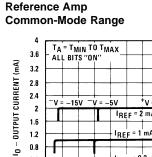
Block Diagram (Note 5)

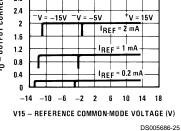



Typical Performance Characteristics

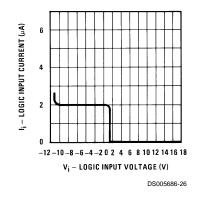

Full Scale Current vs Reference Current

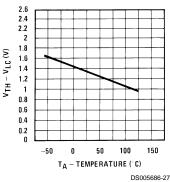
LSB Propagation Delay vs I_{FS}





Curve 1: C_C=15 pF, V_{IN}=2 Vp-p centered at 1V. Curve 2: C_C=15 pF, V_{IN}=50 mVp-p centered at 200 mV.

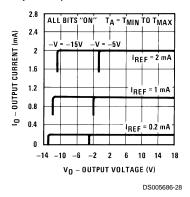

Curve 3: $C_C=0$ pF, $V_{IN}=100$ mVp-p centered at 0V and applied through 50Ω connected to pin 14.2V applied to R14.

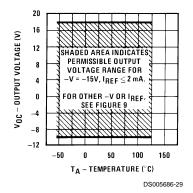


Note. Positive common-mode range is always (V+) – 1.5V.

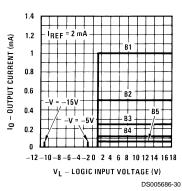
Logic Input Current vs Input Voltage

$V_{TH} - V_{LC}$ vs Temperature

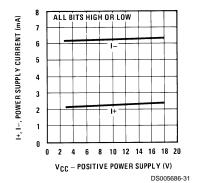


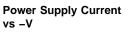

DAC0800/DAC0802

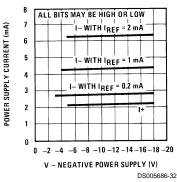
Typical Performance Characteristics (Continued)


Output Current vs Output Voltage (Output Voltage Compliance)

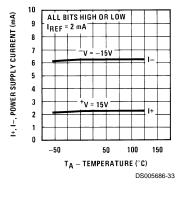
Output Voltage Compliance vs Temperature



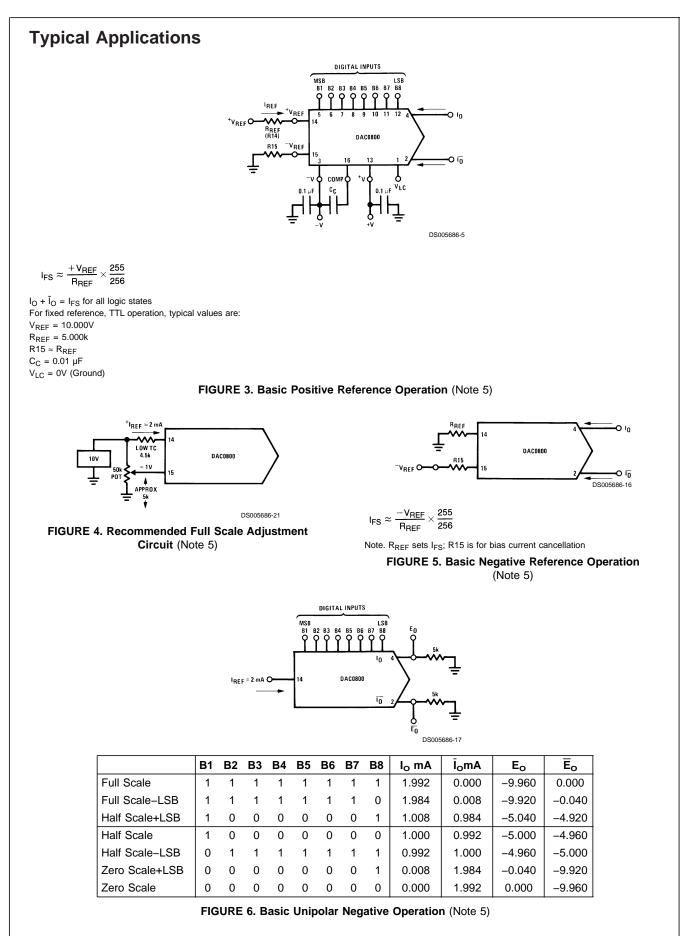


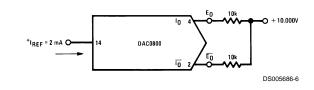

Note. B1–B8 have identical transfer characteristics. Bits are fully switched with less than ½ LSB error, at less than ±100 mV from actual threshold. These switching points are guaranteed to lie between 0.8 and 2V over the operating temperature range (V_{LC} = 0V).

Power Supply Current vs +V

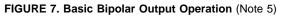


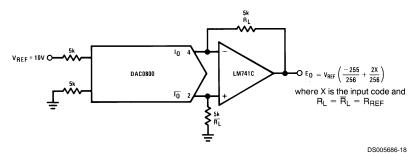
Equivalent Circuit


MS LSB B1 2VBE lout ⁺ν_{REF} ο Тоот 84 24 VREF of COMP O 1/2 1/4 1/8 1/16 1/32 1/64 1/128 1/128 2R 2R 2R 2R DAC08 ŝ DS005686-15



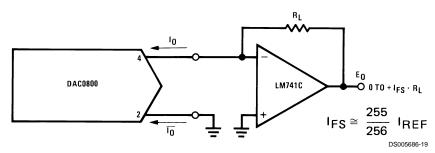
DAC0800/DAC0802



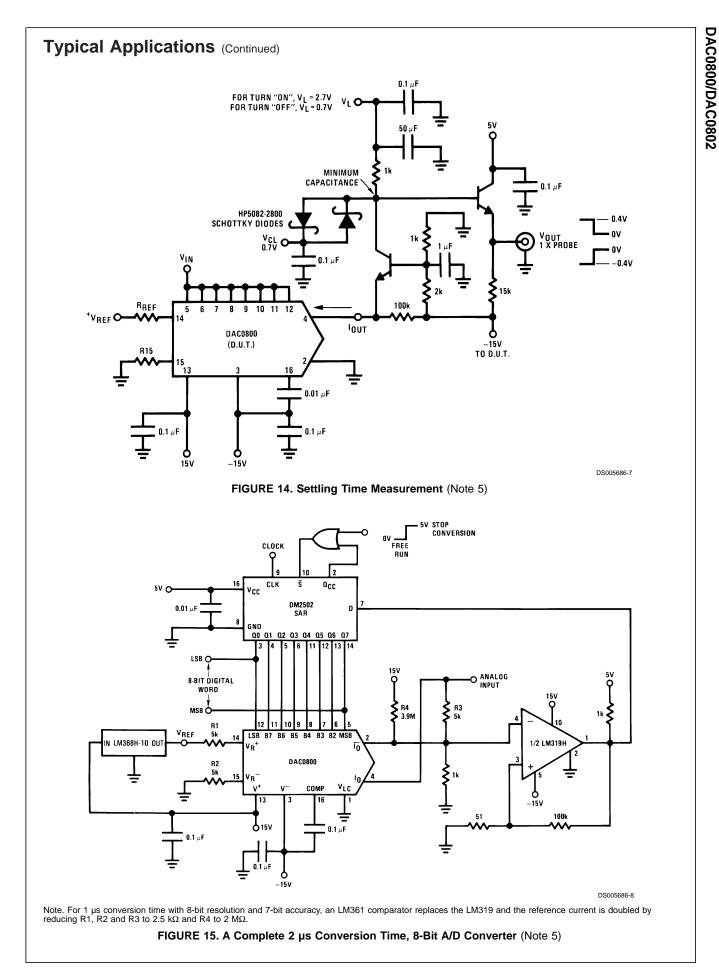


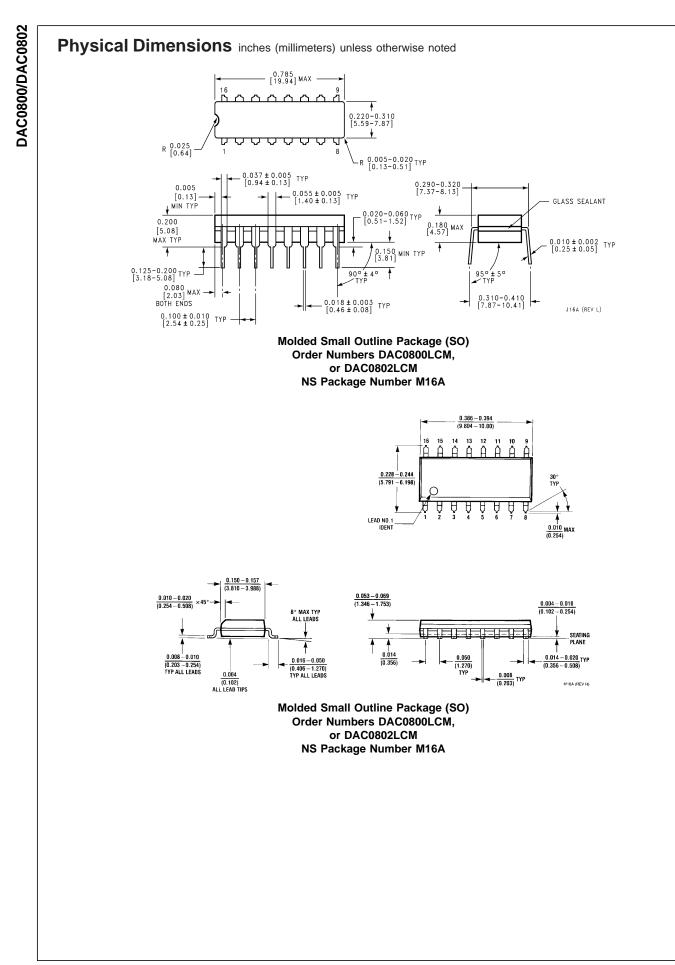
Typical Applications (Continued)

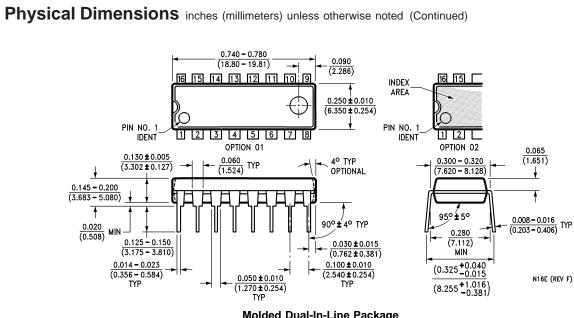
	B1	B2	B 3	B4	В5	B6	B7	B 8	Eo	Ēo
Pos. Full Scale	1	1	1	1	1	1	1	1	-9.920	+10.000
Pos. Full Scale-LSB	1	1	1	1	1	1	1	0	-9.840	+9.920
Zero Scale+LSB	1	0	0	0	0	0	0	1	-0.080	+0.160
Zero Scale	1	0	0	0	0	0	0	0	0.000	+0.080
Zero Scale-LSB	0	1	1	1	1	1	1	1	+0.080	0.000
Neg. Full Scale+LSB	0	0	0	0	0	0	0	1	+9.920	-9.840
Neg. Full Scale	0	0	0	0	0	0	0	0	+10.000	-9.920



If $R_L = \overline{R}_L$ within ±0.05%, output is symmetrical about ground


	B1	B2	B 3	B 4	B5	B6	B7	B 8	Eo
Pos. Full Scale	1	1	1	1	1	1	1	1	+9.960
Pos. Full Scale-LSB	1	1	1	1	1	1	1	0	+9.880
(+)Zero Scale	1	0	0	0	0	0	0	0	+0.040
(-)Zero Scale	0	1	1	1	1	1	1	1	-0.040
Neg. Full Scale+LSB	0	0	0	0	0	0	0	1	-9.880
Neg. Full Scale	0	0	0	0	0	0	0	0	-9.960


FIGURE 8. Symmetrical Offset Binary Operation (Note 5)



For complementary output (operation as negative logic DAC), connect inverting input of op amp to \overline{I}_{O} (pin 2), connect I_{O} (pin 4) to ground. **FIGURE 9. Positive Low Impedance Output Operation** (Note 5)

Typical Applications (Continued) LM741C о то IFS · RL 255 256 IREF I_{FS} ≅ DAC0800 DS005686-20 For complementary output (operation as a negative logic DAC) connect non-inverting input of op am to \overline{I}_O (pin 2); connect I_O (pin 4) to ground. FIGURE 10. Negative Low Impedance Output Operation (Note 5) PMOS ⁺VREF ۰n ۱ የ 1N4148 TTL, DTL 12V TO 15V OPTIONAL RESISTOR FOR OFFSET INPUTS Ş V_{TH} + 1.4V RREF 1N4148 RIN 10k Ο Vic DAC0800 $R_{EQ} \approx 200$ /LC DAC0800 ٥v 6.2V ZENER <u>,</u> -5V TO -10V 16 NO CAP 10K ECL V_{TH} ≅ −1.29V 5V CMOS 10V CMOS V_{TH} = 2.8V VTH 10\ DAC0800 Ŧ DS005686-10 Typical values: R_{IN}=5k,+V_{IN}=10V VLC 6 21 2N3904 FIGURE 11. Pulsed Reference Operation (Note 5) 1N4148 Ονις 1N4148 1N4148 **6** -5.2V **Ь** _{VLC} DS005686-9 $V_{TH} = V_{LC} + 1.4V$ 15V CMOS, HTL, HNIL $V_{TH} = 7.6V$ Note. Do not exceed negative logic input range of DAC. FIGURE 12. Interfacing with Various Logic Families ⁺V_{REF} RREF ⁺V_{REF} O 14 REF DAC0800 R15 (OPTIONAL) VIN HIGH INPUT IMPEDANCE $R_{REF} \approx R15$ DS005686-12 R_{IN} (b) +V_{REF} must be above peak positive swing of V_{IN} DAC0800 DS005686-11 (a) $I_{REF} \ge$ peak negative swing of I_{IN} FIGURE 13. Accommodating Bipolar References (Note 5)

Molded Dual-In-Line Package Order Numbers DAC0800, DAC0802 NS Package Number N16E

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

	National Semiconductor	National Semiconductor	Na
N	Corporation	Europe	As
V	Americas	Fax: +49 (0) 180-530 85 86	Re
	Email: support@nsc.com	Email: europe.support@nsc.com	Te
		Deutsch Tel: +49 (0) 69 9508 6208	Fa
		English Tel: +44 (0) 870 24 0 2171	En
www.na	ational.com	Français Tel: +33 (0) 1 41 91 8790	

lational Semiconductor Isia Pacific Customer Response Group Fel: 65-2544466 fax: 65-2504466 fax: 65-2504466 fmail: ap.support@nsc.com National Semiconductor Japan Ltd. Tel: 81-3-5639-7560 Fax: 81-3-5639-7507

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.