74HC4052; 74HCT4052

Dual 4-channel analog multiplexer/demultiplexer

Product data sheet

1. General description

The 74HC4052; 74HCT4052 is a high-speed Si-gate CMOS device and is pin compatible with the HEF4052B. The device is specified in compliance with JEDEC standard no. 7A.

The 74HC4052; 74HCT4052 is a dual 4-channel analog multiplexer/demultiplexer with common select logic. Each multiplexer has four independent inputs/outputs (pins nY0 to nY3) and a common input/output (pin nZ). The common channel select logics include two digital select inputs (pins S0 and S1) and an active LOW enable input (pin \overline{E}). When pin \overline{E} = LOW, one of the four switches is selected (low-impedance ON-state) with pins S0 and S1. When pin \overline{E} = HIGH, all switches are in the high-impedance OFF-state, independent of pins S0 and S1.

 V_{CC} and GND are the supply voltage pins for the digital control inputs (pins S0, S1 and \overline{E}). The V_{CC} to GND ranges are 2.0 V to 10.0 V for the 74HC4052 and 4.5 V to 5.5 V for the 74HCT4052. The analog inputs/outputs (pins nY0 to nY3 and nZ) can swing between V_{CC} as a positive limit and V_{EE} as a negative limit. $V_{CC} - V_{EE}$ may not exceed 10.0 V.

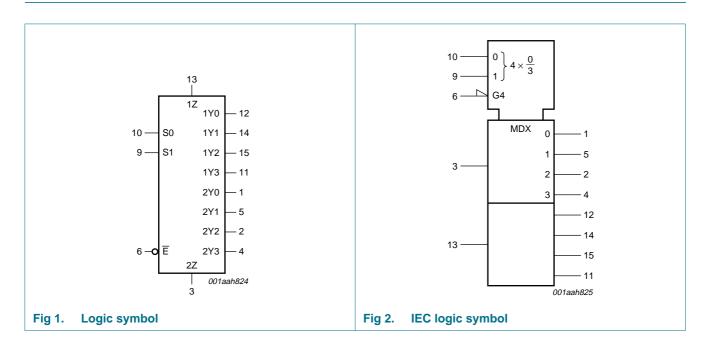
For operation as a digital multiplexer/demultiplexer, V_{EE} is connected to GND (typically ground).

2. Features

- Wide analog input voltage range from –5 V to +5 V
- Low ON resistance:
 - 80 Ω (typical) at $V_{CC} V_{EE} = 4.5 \text{ V}$
 - 70 Ω (typical) at $V_{CC} V_{EE} = 6.0 \text{ V}$
 - 60 Ω (typical) at $V_{CC} V_{EE} = 9.0 \text{ V}$
- Logic level translation: to enable 5 V logic to communicate with ±5 V analog signals
- Typical 'break before make' built-in
- Complies with JEDEC standard no. 7A
- ElectroStatic Discharge (ESD) protection:
 - ◆ Human Body Model (HBM) EIA/JESD22-A114E exceeds 2000 V
 - Machine Model (MM) EIA/JESD22-A115-A exceeds 200 V
- Specified from -40 °C to +85 °C and -40 °C to +125 °C

3. Applications

- Analog multiplexing and demultiplexing
- Digital multiplexing and demultiplexing
- Signal gating



4. Ordering information

Table 1. Ordering information

Type number	Package			
	Temperature range	Name	Description	Version
74HC4052				
74HC4052D	–40 °C to +125 °C	SO16	plastic small outline package; 16 leads; body width 3.9 mm	SOT109-
74HC4052DB	–40 °C to +125 °C	SSOP16	plastic shrink small outline package; 16 leads; body width 5.3 mm	SOT338-
74HC4052N	–40 °C to +125 °C	DIP16	plastic dual in-line package; 16 leads (300 mil)	SOT38-4
74HC4052PW	–40 °C to +125 °C	TSSOP16	plastic thin shrink small outline package; 16 leads; body width 4.4 mm	SOT403-
74HC4052BQ	–40 °C to +125 °C	DHVQFN16	plastic dual-in line compatible thermal enhanced very thin quad flat package; no leads; 16 terminals; body $2.5\times3.5\times0.85$ mm	SOT763-
74HCT4052				
74HCT4052D	–40 °C to +125 °C	SO16	plastic small outline package; 16 leads; body width 3.9 mm	SOT109-
74HCT4052DB	–40 °C to +125 °C	SSOP16	plastic shrink small outline package; 16 leads; body width 5.3 mm	SOT338-
74HCT4052N	–40 °C to +125 °C	DIP16	plastic dual in-line package; 16 leads (300 mil)	SOT38-4
74HCT4052BQ -40 °C to +125 °C		DHVQFN16	plastic dual-in line compatible thermal enhanced very thin quad flat package; no leads; 16 terminals; body $2.5\times3.5\times0.85$ mm	SOT763-

5. Functional diagram

74HC_HCT4052_5 © NXP B.V. 2008. All rights reserved.

Product data sheet 2 of 26

7. Functional description

7.1 Function table

Table 3. Function table^[1]

Input			Channel on
Ē	S1	S0	
L	L	L	nY0 and nZ
L	L	Н	nY1 and nZ
L	Н	L	nY2 and nZ
L	Н	Н	nY3 and nZ
Н	Х	X	none

^[1] H = HIGH voltage level;

L = LOW voltage level;

8. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to $V_{EE} = GND$ (ground = 0 V).

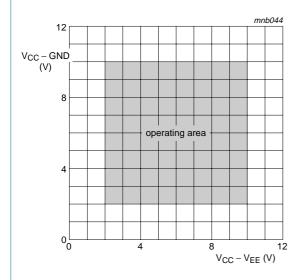
Symbol	Parameter	Conditions	Min	Max	Unit
V_{CC}	supply voltage		[<u>1</u>] -0.5	+11.0	V
I _{IK}	input clamping current	$V_I < -0.5 \text{ V or } V_I > V_{CC} + 0.5 \text{ V}$	-	±20	mA
I _{SK}	switch clamping current	V_{SW} < -0.5 V or V_{SW} > V_{CC} + 0.5 V	-	±20	mA
I _{SW}	switch current	$-0.5 \text{ V} < \text{V}_{\text{SW}} < \text{V}_{\text{CC}} + 0.5 \text{ V}$	-	±25	mA
I _{EE}	supply current		-	±20	mA
I _{CC}	supply current		-	50	mA
I_{GND}	ground current		-	-50	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation	$T_{amb} = -40 ^{\circ}\text{C} \text{ to } +125 ^{\circ}\text{C}$	[2] _	500	mW
Р	power dissipation	per switch	-	100	mW

^[1] To avoid drawing V_{CC} current out of pins nZ, when switch current flows in pins nYn, the voltage drop across the bidirectional switch must not exceed 0.4 V. If the switch current flows into pins nZ, no V_{CC} current will flow out of pins nYn. In this case there is no limit for the voltage drop across the switch, but the voltages at pins nYn and nZ may not exceed V_{CC} or V_{EE}.

[2] For DIP16 packages: above 70 $^{\circ}$ C the value of P_{tot} derates linearly with 12 mW/K.

For SO16 packages: above 70 $^{\circ}\text{C}$ the value of Ptot derates linearly with 8 mW/K.

For SSOP16 and TSSOP16 packages: above 60 $^{\circ}$ C the value of P_{tot} derates linearly with 5.5 mW/K.


For DHVQFN16 packages: above 60 °C the value of Ptot derates linearly with 4.5 mW/K.

X = don't care.

9. Recommended operating conditions

Table 5. Recommended operating conditions

Symbol	Parameter	Conditions	7	'4HC405	52	74	4HCT40	52	Unit
			Min	Тур	Max	Min	Тур	Max	
V_{CC}	supply voltage	see Figure 7 and Figure 8							•
		$V_{CC} - GND$	2.0	5.0	10.0	4.5	5.0	5.5	V
V.		$V_{\text{CC}} - V_{\text{EE}}$	2.0	5.0	10.0	2.0	5.0	10.0	V
VI	input voltage		GND	-	V_{CC}	GND	-	V_{CC}	V
V_{SW}	switch voltage		V_{EE}	-	V_{CC}	V_{EE}	-	V_{CC}	V
T _{amb}	ambient temperature		-40	+25	+125	-40	+25	+125	°C
Δt/ΔV	input transition rise and fall rate	$V_{CC} = 2.0 \text{ V}$	-	1.67	625	-	1.67	139	ns/V
		$V_{CC} = 4.5 \text{ V}$	-	1.67	139	-	1.67	139	ns/V
		$V_{CC} = 6.0 \text{ V}$	-	1.67	83	-	1.67	139	ns/V
		$V_{CC} = 10.0 \text{ V}$	-	1.67	31	-	1.67	139	ns/V

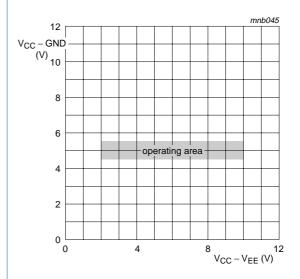


Fig 8. Guaranteed operating area as a function of the supply voltages for 74HCT4052

10. Static characteristics

R_{ON} resistance per switch for 74HC4052 and 74HCT4052

 $V_I = V_{IH}$ or V_{IL} ; for test circuit see Figure 9.

 V_{is} is the input voltage at a nYn or nZ terminal, whichever is assigned as an input.

 V_{os} is the output voltage at a nYn or nZ terminal, whichever is assigned as an output.

For 74HC4052: V_{CC} – GND or V_{CC} – V_{EE} = 2.0 V, 4.5 V, 6.0 V and 9.0 V. For 74HCT4052: V_{CC} – GND = 4.5 V and 5.5 V, V_{CC} – V_{EE} = 2.0 V, 4.5 V, 6.0 V and 9.0 V.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{amb} = -4	0 °C to +85 °C <u>[1]</u>					
R _{ON(peak)}	ON resistance (peak)	$V_{is} = V_{CC}$ to V_{EE}				
		V_{CC} = 2.0 V; V_{EE} = 0 V; I_{SW} = 100 μA	[2] _	-	-	Ω
		V_{CC} = 4.5 V; V_{EE} = 0 V; I_{SW} = 1000 μA	-	100	225	Ω
		V_{CC} = 6.0 V; V_{EE} = 0 V; I_{SW} = 1000 μA	-	90	200	Ω
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}; I_{SW} = 1000 \mu\text{A}$	-	70	165	Ω
R _{ON(rail)}	ON resistance (rail)	$V_{is} = V_{EE}$				
		V_{CC} = 2.0 V; V_{EE} = 0 V; I_{SW} = 100 μA	[2] _	150	-	Ω
		V_{CC} = 4.5 V; V_{EE} = 0 V; I_{SW} = 1000 μA	-	80	175	Ω
		V_{CC} = 6.0 V; V_{EE} = 0 V; I_{SW} = 1000 μA	-	70	150	Ω
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}; I_{SW} = 1000 \mu\text{A}$	-	60	130	Ω
	ON resistance (peak) ON resistance (rail) ON resistance mismatch between channels 40 °C to +125 °C ON resistance (peak)	$V_{is} = V_{CC}$				
		V_{CC} = 2.0 V; V_{EE} = 0 V; I_{SW} = 100 μA	-	150	-	Ω
		V_{CC} = 4.5 V; V_{EE} = 0 V; I_{SW} = 1000 μA	-	90	200	Ω
		V_{CC} = 6.0 V; V_{EE} = 0 V; I_{SW} = 1000 μA	- 100 225 - 90 200 - 70 165 [2] - 150 80 175 - 70 150 - 60 130 - 150 90 200 - 80 175 - 65 150 [2] 9 8 6 -	175	Ω	
		V_{CC} = 4.5 V; V_{EE} = -4.5 V; I_{SW} = 1000 μA	-	65	150	Ω
ΔR_{ON}	ON resistance mismatch	$V_{is} = V_{CC}$ to V_{EE}				
	between channels	$V_{CC} = 2.0 \text{ V}; V_{EE} = 0 \text{ V}$	[2] _	-	-	Ω
		$V_{CC} = 4.5 \text{ V}; V_{EE} = 0 \text{ V}$	-	9	-	Ω
		$V_{CC} = 6.0 \text{ V}; V_{EE} = 0 \text{ V}$	-	8	-	Ω
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	-	6	-	Ω
T _{amb} = -4	0 °C to +125 °C					
R _{ON(peak)}	ON resistance (peak)	$V_{is} = V_{CC}$ to V_{EE}				
		V_{CC} = 2.0 V; V_{EE} = 0 V; I_{SW} = 100 μA	[2] _	-	-	Ω
		V_{CC} = 4.5 V; V_{EE} = 0 V; I_{SW} = 1000 μA	-	-	270	Ω
		V_{CC} = 6.0 V; V_{EE} = 0 V; I_{SW} = 1000 μA	-	-	240	Ω
b Γ _{amb} = -40		$V_{CC} = 4.5 \text{ V}; V_{FF} = -4.5 \text{ V}; I_{SW} = 1000 \mu\text{A}$	-	_	195	Ω

Table 6. R_{ON} resistance per switch for 74HC4052 and 74HCT4052 ...continued

 $V_I = V_{IH}$ or V_{IL} ; for test circuit see Figure 9.

 V_{is} is the input voltage at a nYn or nZ terminal, whichever is assigned as an input.

 V_{os} is the output voltage at a nYn or nZ terminal, whichever is assigned as an output.

For 74HC4052: V_{CC} – GND or V_{CC} – V_{EE} = 2.0 V, 4.5 V, 6.0 V and 9.0 V.

For 74HCT4052: V_{CC} – GND = 4.5 V and 5.5 V, V_{CC} – V_{EE} = 2.0 V, 4.5 V, 6.0 V and 9.0 V.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
R _{ON(rail)}	ON resistance (rail)	$V_{is} = V_{EE}$				
		V_{CC} = 2.0 V; V_{EE} = 0 V; I_{SW} = 100 μA	[2]	 - 21 - 18 - 16 - 24 - 21	-	Ω
		V_{CC} = 4.5 V; V_{EE} = 0 V; I_{SW} = 1000 μA	-	-	210	Ω
		V_{CC} = 6.0 V; V_{EE} = 0 V; I_{SW} = 1000 μA	-	-	- Ω 210 Ω 180 Ω 160 Ω - Ω 240 Ω 210 Ω	Ω
		V_{CC} = 4.5 V; V_{EE} = -4.5 V; I_{SW} = 1000 μA	-	-	160	Ω
		$V_{is} = V_{CC}$			- \ \Omega \tau \tau \tau \tau \tau \tau \tau \ta	
		V_{CC} = 2.0 V; V_{EE} = 0 V; I_{SW} = 100 μA	[2] _	-	-	Ω
		V_{CC} = 4.5 V; V_{EE} = 0 V; I_{SW} = 1000 μA	-	-	240	Ω
		V_{CC} = 6.0 V; V_{EE} = 0 V; I_{SW} = 1000 μA	-	-	210	Ω Ω Ω Ω Ω Ω Ω Ω Ω
	nian) 2.1.133.starios (tair)	$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}; I_{SW} = 1000 \mu\text{A}$	-	-	180	Ω

- [1] All typical values are measured at T_{amb} = 25 °C.
- [2] When supply voltages (V_{CC} V_{EE}) near 2.0 V the analog switch ON resistance becomes extremely non-linear. When using a supply of 2 V, it is recommended to use these devices only for transmitting digital signals.

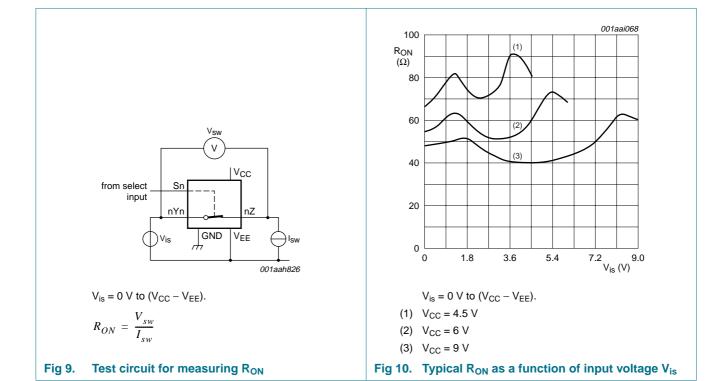


 Table 7.
 Static characteristics for 74HC4052 ...continued

Voltages are referenced to GND (ground = 0 V).

 V_{is} is the input voltage at pins nYn or nZ, whichever is assigned as an input.

Vos is the output voltage at pins nZ or nYn, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{S(OFF)}	OFF-state leakage current	V_{CC} = 10.0 V; V_{EE} = 0 V; V_{I} = V_{IH} or V_{IL} ; $ V_{SW} $ = V_{CC} - V_{EE} ; see Figure 11				
		per channel	-	-	±1.0	μΑ
		all channels	-	-	±2.0	μΑ
I _{S(ON)}	ON-state leakage current	$V_I = V_{IH}$ or V_{IL} ; $ V_{SW} = V_{CC} - V_{EE}$; $V_{CC} = 10.0$ V; $V_{EE} = 0$ V; see Figure 12	-	-	±2.0	μΑ
I _{CC}	supply current	V_{EE} = 0 V; V_{I} = V_{CC} or GND; V_{is} = V_{EE} or V_{CC} ; V_{os} = V_{CC} or V_{EE}				
		$V_{CC} = 6.0 \text{ V}$	-	-	160.0	μΑ
		V _{CC} = 10.0 V	-	-	320.0	μΑ

^[1] All typical values are measured at T_{amb} = 25 °C.

Table 8. Static characteristics for 74HCT4052

Voltages are referenced to GND (ground = 0 V).

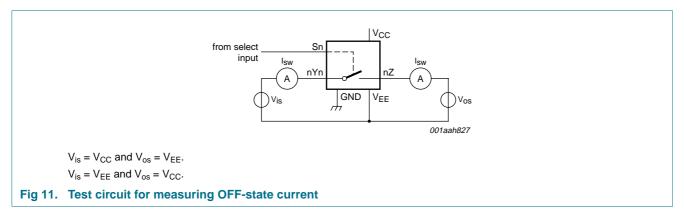
 V_{is} is the input voltage at pins nYn or nZ, whichever is assigned as an input.

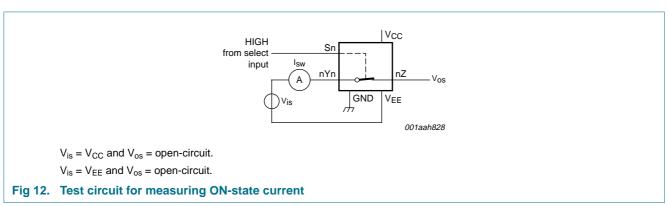
 V_{os} is the output voltage at pins nZ or nYn, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{amb} = -40) °C to +85 °C <u>[1]</u>					
V_{IH}	HIGH-level input voltage	V_{CC} = 4.5 V to 5.5 V	2.0	1.6	-	V
V _{IL}	LOW-level input voltage	V _{CC} = 4.5 V to 5.5 V	-	1.2	8.0	V
I _I	input leakage current	$V_I = V_{CC}$ or GND; $V_{CC} = 5.5 \text{ V}$; $V_{EE} = 0 \text{ V}$	-	-	±1.0	μΑ
I _{S(OFF)}	OFF-state leakage current	V_{CC} = 10.0 V; V_{EE} = 0 V; V_{I} = V_{IH} or V_{IL} ; $ V_{SW} $ = V_{CC} - V_{EE} ; see <u>Figure 11</u>				
		per channel	-	-	±1.0	μΑ
		all channels	-	-	±2.0	μΑ
I _{S(ON)}	ON-state leakage current	V_{CC} = 10.0 V; V_{EE} = 0 V; V_{I} = V_{IH} or V_{IL} ; $ V_{SW} $ = V_{CC} - V_{EE} ; see <u>Figure 12</u>	-	-	±2.0	μΑ
I _{CC}	supply current	$V_I = V_{CC}$ or GND; $V_{is} = V_{EE}$ or V_{CC} ; $V_{os} = V_{CC}$ or V_{EE}				
		$V_{CC} = 5.5 \text{ V}; V_{EE} = 0 \text{ V}$	-	-	80.0	μΑ
		$V_{CC} = 5.0 \text{ V}; V_{EE} = -5.0 \text{ V}$	-	-	1.2 0.8 V 1.2 0.8 V 1.0 μA 1.0 μA 1.1.0 μA 1.10 μA 1.	
ΔI_{CC}	additional supply current	per input; $V_I = V_{CC} - 2.1$ V; other inputs at V_{CC} or GND; $V_{CC} = 4.5$ V to 5.5 V; $V_{EE} = 0$ V	-	45	202.5	μΑ
Cı	input capacitance		-	3.5	-	pF
C _{sw}	switch capacitance	independent pins Y	-	5	-	pF
		common pins Z	-	12	-	pF
T _{amb} = -40) °C to +125 °C					
V_{IH}	HIGH-level input voltage	$V_{CC} = 4.5 \text{ V} \text{ to } 5.5 \text{ V}$	2.0	-	-	V
V _{IL}	LOW-level input voltage	$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	-	-	8.0	V
I _{LI}	input leakage current	$V_I = V_{CC}$ or GND; $V_{CC} = 5.5$ V; $V_{EE} = 0$ V	-	-	±1.0	μΑ
74HC_HCT4052_5					© NXP B.V. 2008.	All rights res

Product data sheet 10 of 26

Table 8. Static characteristics for 74HCT4052 ...continued


Voltages are referenced to GND (ground = 0 V).


 V_{is} is the input voltage at pins nYn or nZ, whichever is assigned as an input.

 V_{os} is the output voltage at pins nZ or nYn, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{S(OFF)}	OFF-state leakage current	V_{CC} = 10.0 V; V_{EE} = 0 V; V_{I} = V_{IH} or V_{IL} ; $ V_{SW} $ = V_{CC} - V_{EE} ; see <u>Figure 11</u>				
		per channel	-	-	±1.0	μΑ
		all channels	-	-	±2.0	μΑ
I _{S(ON)}	ON-state leakage current	V_{CC} = 10.0 V; V_{EE} = 0 V; V_{I} = V_{IH} or V_{IL} ; $ V_{SW} $ = V_{CC} - V_{EE} ; see <u>Figure 12</u>	-	-	±2.0	μΑ
I _{CC}	supply current	$V_I = V_{CC}$ or GND; $V_{is} = V_{EE}$ or V_{CC} ; $V_{os} = V_{CC}$ or V_{EE}				
		$V_{CC} = 5.5 \text{ V}; V_{EE} = 0 \text{ V}$	-	-	160.0	μΑ
		$V_{CC} = 5.0 \text{ V}; V_{EE} = -5.0 \text{ V}$	-	-	320.0	μΑ
ΔI_{CC}	additional supply current	per input; $V_I = V_{CC} - 2.1$ V; other inputs at V_{CC} or GND; $V_{CC} = 4.5$ V to 5.5 V; $V_{EE} = 0$ V	-	-	220.5	μΑ

[1] All typical values are measured at T_{amb} = 25 °C.

[4] t_{off} is the same as t_{PHZ} and t_{PLZ} .

[5] C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

 $P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \Sigma \{(C_L + C_{sw}) \times V_{CC}^2 \times f_o\} \text{ where: }$

 f_i = input frequency in MHz;

f_o = output frequency in MHz;

N = number of inputs switching;

 $\Sigma\{(C_L + C_{sw}) \times V_{CC}^2 \times f_o\} = \text{sum of outputs};$

C_L = output load capacitance in pF;

C_{sw} = switch capacitance in pF;

V_{CC} = supply voltage in V.

Table 10. Dynamic characteristics for 74HCT4052

 $GND = 0 \ V$; $t_r = t_f = 6 \ ns$; $C_L = 50 \ pF$; for test circuit see Figure 15.

V_{is} is the input voltage at a nYn or nZ terminal, whichever is assigned as an input.

 V_{os} is the output voltage at a nYn or nZ terminal, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$T_{amb} = -4$	l0 °C to +85 °C <u>[1]</u>					
t _{pd}	propagation delay	V_{is} to V_{os} ; $R_L = \infty \Omega$; see Figure 13	[2]			
		V _{CC} = 4.5 V; V _{EE} = 0 V	-	5	15	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	-	4	10	ns
t _{on}	turn-on time	\overline{E} , Sn to V _{os} ; R _L = 1 k Ω ; see Figure 14	[3]			
		V _{CC} = 4.5 V; V _{EE} = 0 V	-	41	88	ns
	turn-on time E, S Vo Vo turn-off time E, S Vo Vo vo vo power dissipation capacitance -40 °C to +125 °C propagation delay Vis to	$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	-	28	60	ns
t _{off}	turn-off time	\overline{E} , Sn to V _{os} ; R _L = 1 k Ω ; see Figure 14	<u>[4]</u>			
		V _{CC} = 4.5 V; V _{EE} = 0 V	-	26	63	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	-	26 63 ns 21 48 ns 57 - pF	ns	
C_{PD}	•	per switch; $V_I = GND$ to $V_{CC} - 1.5 \text{ V}$	<u>[5]</u> -	57	-	pF
$T_{amb} = -4$	10 °C to +125 °C					
t _{pd}	propagation delay	V_{is} to V_{os} ; $R_L = \infty \Omega$; see Figure 13	[2]			
		$V_{CC} = 4.5 \text{ V}; V_{EE} = 0 \text{ V}$	-	-	18	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	-	-	12	ns
t _{on}	turn-on time	\overline{E} , Sn to V _{os} ; R _L = 1 k Ω ; see Figure 14	[3]			
		V _{CC} = 4.5 V; V _{EE} = 0 V	-	-	105	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	-	-	72	ns
t _{off}	turn-off time	\overline{E} , Sn to V _{os} ; R _L = 1 k Ω ; see Figure 14	<u>[4]</u>			
		V _{CC} = 4.5 V; V _{EE} = 0 V	-	-	75	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	-	-	57	ns

- [1] All typical values are measured at $T_{amb} = 25$ °C.
- [2] t_{pd} is the same as t_{PHL} and t_{PLH} .
- [3] t_{on} is the same as t_{PZH} and t_{PZL} .
- [4] t_{off} is the same as t_{PHZ} and t_{PLZ} .
- [5] C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

 $P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \Sigma \{(C_L + C_{sw}) \times V_{CC}^2 \times f_o\} \text{ where: }$

 f_i = input frequency in MHz;

fo = output frequency in MHz;

N = number of inputs switching;

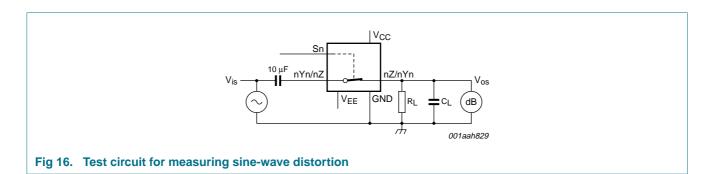
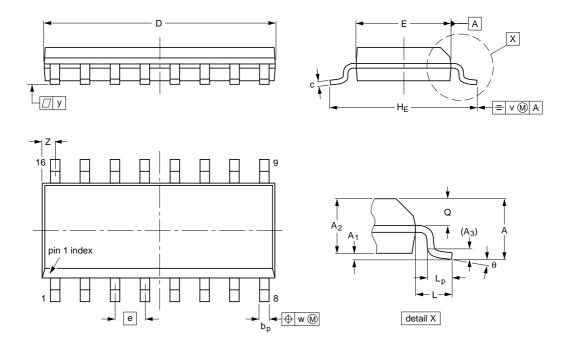

12. Additional dynamic characteristics

Table 12. Additional dynamic characteristics

Recommended conditions and typical values; $GND = 0 \ V$; $T_{amb} = 25 \ ^{\circ}C$; $C_L = 50 \ pF$. V_{is} is the input voltage at pins nYn or nZ, whichever is assigned as an input. V_{os} is the output voltage at pins nYn or nZ, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
d_{sin}	sine-wave distortion	$f_i = 1 \text{ kHz}$; $R_L = 10 \text{ k}\Omega$; see Figure 16				
		$V_{is} = 4.0 \text{ V (p-p)}; V_{CC} = 2.25 \text{ V}; V_{EE} = -2.25 \text{ V}$	-	0.04	-	%
		V_{is} = 8.0 V (p-p); V_{CC} = 4.5 V; V_{EE} = -4.5 V	-	0.02	-	%
		f_i = 10 kHz; R_L = 10 k Ω ; see <u>Figure 16</u>				
		V_{is} = 4.0 V (p-p); V_{CC} = 2.25 V; V_{EE} = -2.25 V	-	0.12	-	%
		V_{is} = 8.0 V (p-p); V_{CC} = 4.5 V; V_{EE} = -4.5 V	-	0.06	-	%
α_{iso}	isolation (OFF-state)	$R_L = 600 \Omega$; $f_i = 1 MHz$; see Figure 17				
		$V_{CC} = 2.25 \text{ V}; V_{EE} = -2.25 \text{ V}$	<u>[1]</u> -	-50	-	dB
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	<u>[1]</u> -	-50	-	dB
Xtalk	crosstalk	between two switches/multiplexers; R_L = 600 Ω ; f_i = 1 MHz; see Figure 18				
		$V_{CC} = 2.25 \text{ V}; V_{EE} = -2.25 \text{ V}$	[1] -	-60	-	dB
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	[1] -	-60	-	dB
V _{ct}	crosstalk voltage	peak-to-peak value; between control and any switch; $R_L = 600~\Omega$; $f_i = 1~MHz$; \overline{E} or Sn square wave between V_{CC} and GND; $t_r = t_f = 6~ns$; see Figure 19				
		$V_{CC} = 4.5 \text{ V}; V_{EE} = 0 \text{ V}$	-	110	-	mV
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	-	220	-	mV
$f_{(-3dB)}$	-3 dB frequency response	$R_L = 50 \Omega$; see Figure 20				
		$V_{CC} = 2.25 \text{ V}; V_{EE} = -2.25 \text{ V}$	[2] _	170	-	MHz
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	[2] _	180	-	MHz

- [1] Adjust input voltage V_{is} to 0 dBm level (0 dBm = 1 mW into 600 Ω).
- [2] Adjust input voltage V_{is} to 0 dBm level at V_{os} for 1 MHz (0 dBm = 1 mW into 50 Ω).


74HC_HCT4052_5 © NXP B.V. 2008. All rights reserved.

Product data sheet 16 of 26

13. Package outline

SO16: plastic small outline package; 16 leads; body width 3.9 mm

SOT109-1

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
mm	1.75	0.25 0.10	1.45 1.25	0.25	0.49 0.36	0.25 0.19	10.0 9.8	4.0 3.8	1.27	6.2 5.8	1.05	1.0 0.4	0.7 0.6	0.25	0.25	0.1	0.7 0.3	8°
inches	0.069	0.010 0.004	0.057 0.049	0.01		0.0100 0.0075	0.39 0.38	0.16 0.15	0.05	0.244 0.228	0.041	0.039 0.016	0.028 0.020	0.01	0.01	0.004	0.028 0.012	0°

scale

Note

1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN	
	IEC	JEDEC	JEITA		PROJECTION	
SOT109-1	076E07	MS-012				

Fig 21. Package outline SOT109-1 (SO16)

<u>74HC_HCT4052_5</u> © NXP B.V. 2008. All rights reserved.

Product data sheet 19 of 26