74HC4052; 74HCT4052

Dual 4-channel analog multiplexer/demultiplexer

Product data sheet

1. General description

The $74 \mathrm{HC} 4052 ; 74 \mathrm{HCT} 4052$ is a high-speed Si -gate CMOS device and is pin compatible with the HEF4052B. The device is specified in compliance with JEDEC standard no. 7A.

The $74 \mathrm{HC} 4052 ; 74 \mathrm{HCT} 4052$ is a dual 4-channel analog multiplexer/demultiplexer with common select logic. Each multiplexer has four independent inputs/outputs (pins nY0 to nY 3) and a common input/output (pin nZ). The common channel select logics include two digital select inputs (pins S0 and S1) and an active LOW enable input (pin \bar{E}). When pin $\bar{E}=L O W$, one of the four switches is selected (low-impedance ON-state) with pins S0 and S1. When pin $\bar{E}=$ HIGH, all switches are in the high-impedance OFF-state, independent of pins S0 and S1.
V_{CC} and GND are the supply voltage pins for the digital control inputs (pins S0, S1 and $\overline{\mathrm{E}}$). The V_{Cc} to GND ranges are 2.0 V to 10.0 V for the 74 HC 4052 and 4.5 V to 5.5 V for the 74HCT4052. The analog inputs/outputs (pins $n Y 0$ to $n Y 3$ and $n Z$) can swing between V_{Cc} as a positive limit and V_{EE} as a negative limit. $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$ may not exceed 10.0 V .

For operation as a digital multiplexer/demultiplexer, V_{EE} is connected to GND (typically ground).

2. Features

```
- Wide analog input voltage range from -5 V to +5 V
- Low ON resistance:
\(-80 \Omega\) (typical) at \(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=4.5 \mathrm{~V}\)
- \(70 \Omega\) (typical) at \(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=6.0 \mathrm{~V}\)
-60 \(\Omega\) (typical) at \(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=9.0 \mathrm{~V}\)
\(\square\) Logic level translation: to enable 5 V logic to communicate with \(\pm 5 \mathrm{~V}\) analog signals
- Typical 'break before make’ built-in
- Complies with JEDEC standard no. 7A
- ElectroStatic Discharge (ESD) protection:
- Human Body Model (HBM) EIA/JESD22-A114E exceeds 2000 V
- Machine Model (MM) EIA/JESD22-A115-A exceeds 200 V
- Specified from \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) and \(-40^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)
```


3. Applications

- Analog multiplexing and demultiplexing
- Digital multiplexing and demultiplexing
- Signal gating

4. Ordering information

Table 1. Ordering information

Type number	Package			
	Temperature range	Name	Description	Version
74HC4052				
74HC4052D	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	SO16	plastic small outline package; 16 leads; body width 3.9 mm	SOT109-1
74HC4052DB	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	SSOP16	plastic shrink small outline package; 16 leads; body width 5.3 mm	SOT338-1
74HC4052N	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	DIP16	plastic dual in-line package; 16 leads (300 mil)	SOT38-4
74HC4052PW	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	TSSOP16	plastic thin shrink small outline package; 16 leads; body width 4.4 mm	SOT403-1
74HC4052BQ	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	DHVQFN16	plastic dual-in line compatible thermal enhanced very thin quad flat package; no leads; 16 terminals; body $2.5 \times 3.5 \times 0.85 \mathrm{~mm}$	SOT763-1
74HCT4052				
74HCT4052D	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	SO16	plastic small outline package; 16 leads; body width 3.9 mm	SOT109-1
74HCT4052DB	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	SSOP16	plastic shrink small outline package; 16 leads; body width 5.3 mm	SOT338-1
74HCT4052N	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	DIP16	plastic dual in-line package; 16 leads (300 mil)	SOT38-4
74HCT4052BQ	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	DHVQFN16	plastic dual-in line compatible thermal enhanced very thin quad flat package; no leads; 16 terminals; body $2.5 \times 3.5 \times 0.85 \mathrm{~mm}$	SOT763-1

5. Functional diagram

Fig 1. Logic symbol

Fig 2. IEC logic symbol

7. Functional description

7.1 Function table

Table 3. Function table[1]

Input		Channel on	
E	S1	S0	
L	L	L	nY0 and nZ
L	L	H	$n Y 1$ and nZ
L	H	L	$n Y 2$ and nZ
L	H	H	$n Y 3$ and nZ
H	X	X	none

[1] H = HIGH voltage level;
L = LOW voltage level;
X = don't care.

8. Limiting values

Table 4. Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134).
Voltages are referenced to $V_{E E}=G N D$ (ground $=0 \mathrm{~V}$).

Symbol	Parameter	Conditions	Min	Max	Unit
$V_{C C}$	supply voltage		[1] -0.5	+11.0	V
$I_{\text {IK }}$	input clamping current	$\mathrm{V}_{1}<-0.5 \mathrm{~V}$ or $\mathrm{V}_{1}>\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	-	± 20	mA
ISK	switch clamping current	$\mathrm{V}_{\text {SW }}<-0.5 \mathrm{~V}$ or $\mathrm{V}_{\text {SW }}>\mathrm{V}_{\text {CC }}+0.5 \mathrm{~V}$	-	± 20	mA
$I_{\text {SW }}$	switch current	$-0.5 \mathrm{~V}<\mathrm{V}_{\mathrm{SW}}<\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	-	± 25	mA
$l_{\text {EE }}$	supply current		-	± 20	mA
$\mathrm{I}_{\text {CC }}$	supply current		-	50	mA
$\mathrm{I}_{\text {GND }}$	ground current		-	-50	mA
$\mathrm{T}_{\text {stg }}$	storage temperature		-65	+150	${ }^{\circ} \mathrm{C}$
$\mathrm{P}_{\text {tot }}$	total power dissipation	$\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	[2] -	500	mW
P	power dissipation	per switch	-	100	mW

[1] To avoid drawing V_{CC} current out of pins nZ , when switch current flows in pins nYn , the voltage drop across the bidirectional switch must not exceed 0.4 V . If the switch current flows into pins $n Z$, no V_{CC} current will flow out of pins nYn . In this case there is no limit for the voltage drop across the switch, but the voltages at pins $n Y n$ and $n Z$ may not exceed V_{CC} or V_{EE}.
[2] For DIP16 packages: above $70^{\circ} \mathrm{C}$ the value of $\mathrm{P}_{\text {tot }}$ derates linearly with $12 \mathrm{~mW} / \mathrm{K}$.
For SO16 packages: above $70^{\circ} \mathrm{C}$ the value of $\mathrm{P}_{\text {tot }}$ derates linearly with $8 \mathrm{~mW} / \mathrm{K}$.
For SSOP16 and TSSOP16 packages: above $60^{\circ} \mathrm{C}$ the value of $P_{\text {tot }}$ derates linearly with $5.5 \mathrm{~mW} / \mathrm{K}$
For DHVQFN16 packages: above $60^{\circ} \mathrm{C}$ the value of $P_{\text {tot }}$ derates linearly with $4.5 \mathrm{~mW} / \mathrm{K}$.

9. Recommended operating conditions

Table 5. Recommended operating conditions

Symbol	Parameter	Conditions	74HC4052			74HCT4052			Unit
			Min	Typ	Max	Min	Typ	Max	
V_{CC}	supply voltage	see Figure 7 and Figure 8							
		$V_{C C}-G N D$	2.0	5.0	10.0	4.5	5.0	5.5	V
		$\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$	2.0	5.0	10.0	2.0	5.0	10.0	V
V_{1}	input voltage		GND	-	$V_{\text {cc }}$	GND	-	$V_{\text {cc }}$	V
$\mathrm{V}_{\text {SW }}$	switch voltage		$\mathrm{V}_{\text {EE }}$	-	$V_{C C}$	$\mathrm{V}_{\text {EE }}$	-	V_{CC}	V
$\mathrm{T}_{\text {amb }}$	ambient temperature		-40	+25	+125	-40	+25	+125	${ }^{\circ} \mathrm{C}$
$\Delta \mathrm{t} / \Delta \mathrm{V}$	input transition rise and fall rate	$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	-	1.67	625	-	1.67	139	ns / V
		$\mathrm{V}_{C C}=4.5 \mathrm{~V}$	-	1.67	139	-	1.67	139	ns / V
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	-	1.67	83	-	1.67	139	ns / V
		$\mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V}$	-	1.67	31	-	1.67	139	ns / V

Fig 7. Guaranteed operating area as a function of the supply voltages for 74HC4052

Fig 8. Guaranteed operating area as a function of the supply voltages for 74HCT4052

10. Static characteristics

Table 6. $\quad R_{\text {ON }}$ resistance per switch for 74HC4052 and 74HCT4052
$V_{I}=V_{I H}$ or $V_{I L}$; for test circuit see Figure 9.
$V_{\text {is }}$ is the input voltage at a n Yn or nZ terminal, whichever is assigned as an input.
$V_{\text {os }}$ is the output voltage at a nYn or nZ terminal, whichever is assigned as an output.
For 74HC4052: $V_{C C}-G N D$ or $V_{C C}-V_{E E}=2.0 \mathrm{~V}, 4.5 \mathrm{~V}, 6.0 \mathrm{~V}$ and 9.0 V .
For 74HCT4052: $V_{C C}-G N D=4.5 \mathrm{~V}$ and 5.5 $\mathrm{V}, V_{C C}-V_{E E}=2.0 \mathrm{~V}, 4.5 \mathrm{~V}, 6.0 \mathrm{~V}$ and 9.0 V .

Symbol Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}[\underline{1]}$					
$\mathrm{R}_{\mathrm{ON}(\text { peak) }} \mathrm{ON}$ resistance (peak)	$\mathrm{V}_{\text {is }}=\mathrm{V}_{\text {CC }}$ to $\mathrm{V}_{\text {EE }}$				
	$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{SW}}=100 \mu \mathrm{~A}$	[2] -	-	-	Ω
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{SW}}=1000 \mu \mathrm{~A}$	-	100	225	Ω
	$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{\text {EE }}=0 \mathrm{~V}$; $\mathrm{I}_{\mathrm{SW}}=1000 \mu \mathrm{~A}$	-	90	200	Ω
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{SW}}=1000 \mu \mathrm{~A}$	-	70	165	Ω
$\mathrm{R}_{\text {ON(rail) }}$ ON resistance (rail)	$\mathrm{V}_{\text {is }}=\mathrm{V}_{\mathrm{EE}}$				
	$\mathrm{V}_{C C}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{I}_{\text {SW }}=100 \mu \mathrm{~A}$	[2] -	150	-	Ω
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{SW}}=1000 \mu \mathrm{~A}$	-	80	175	Ω
	$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{SW}}=1000 \mu \mathrm{~A}$	-	70	150	Ω
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{SW}}=1000 \mu \mathrm{~A}$	-	60	130	Ω
	$\mathrm{V}_{\text {is }}=\mathrm{V}_{\text {cc }}$				
	$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{I}_{\text {SW }}=100 \mu \mathrm{~A}$	-	150	-	Ω
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{SW}}=1000 \mu \mathrm{~A}$	-	90	200	Ω
	$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$; $\mathrm{I}_{\mathrm{SW}}=1000 \mu \mathrm{~A}$	-	80	175	Ω
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{SW}}=1000 \mu \mathrm{~A}$	-	65	150	Ω
$\Delta R_{\text {ON }} \quad \begin{aligned} & \text { ON resistance mismatch } \\ & \text { between channels }\end{aligned}$	$\mathrm{V}_{\text {is }}=\mathrm{V}_{\text {CC }}$ to $\mathrm{V}_{\text {EE }}$				
	$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	[2] -	-	-	Ω
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	9	-	Ω
	$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	8	-	Ω
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-	6	-	Ω
$\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$					
$\mathrm{R}_{\mathrm{ON}(\text { peak) }} \mathrm{ON}$ resistance (peak)	$\mathrm{V}_{\text {is }}=\mathrm{V}_{\mathrm{CC}}$ to $\mathrm{V}_{\text {EE }}$				
	$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{I}_{\text {SW }}=100 \mu \mathrm{~A}$	[2] -	-	-	Ω
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$; $\mathrm{I}_{\text {SW }}=1000 \mu \mathrm{~A}$	-	-	270	Ω
	$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$; $\mathrm{I}_{\text {SW }}=1000 \mu \mathrm{~A}$	-	-	240	Ω
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{SW}}=1000 \mu \mathrm{~A}$	-	-	195	Ω

Table 6. R R
$V_{I}=V_{I H}$ or $V_{I L}$; for test circuit see Figure 9.
$V_{\text {is }}$ is the input voltage at a $n Y n$ or nZ terminal, whichever is assigned as an input.
$V_{\text {os }}$ is the output voltage at a $n Y n$ or $n Z$ terminal, whichever is assigned as an output.
For 74HC4052: $V_{C C}-G N D$ or $V_{C C}-V_{E E}=2.0 \mathrm{~V}, 4.5 \mathrm{~V}, 6.0 \mathrm{~V}$ and 9.0 V .
For 74HCT4052: $V_{C C}-G N D=4.5 \mathrm{~V}$ and 5.5 $\mathrm{V}, V_{C C}-V_{E E}=2.0 \mathrm{~V}, 4.5 \mathrm{~V}, 6.0 \mathrm{~V}$ and 9.0 V .

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{R}_{\text {ON(rail) }}$	ON resistance (rail)	$\mathrm{V}_{\text {is }}=\mathrm{V}_{\mathrm{EE}}$				
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{SW}}=100 \mu \mathrm{~A}$	[2] -	-	-	Ω
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$; $\mathrm{I}_{\text {SW }}=1000 \mu \mathrm{~A}$	-	-	210	Ω
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$; $\mathrm{I}_{\mathrm{SW}}=1000 \mu \mathrm{~A}$	-	-	180	Ω
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V} ; \mathrm{I}_{\text {SW }}=1000 \mu \mathrm{~A}$	-	-	160	Ω
		$\mathrm{V}_{\text {is }}=\mathrm{V}_{\text {CC }}$				
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{SW}}=100 \mu \mathrm{~A}$	[2] -	-	-	Ω
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$; $\mathrm{I}_{\text {W }}=1000 \mu \mathrm{~A}$	-	-	240	Ω
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{I}_{\text {SW }}=1000 \mu \mathrm{~A}$	-	-	210	Ω
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{SW}}=1000 \mu \mathrm{~A}$	-	-	180	Ω

[1] All typical values are measured at $T_{\text {amb }}=25^{\circ} \mathrm{C}$.
[2] When supply voltages $\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\right)$ near 2.0 V the analog switch ON resistance becomes extremely non-linear. When using a supply of 2 V , it is recommended to use these devices only for transmitting digital signals.

$\mathrm{V}_{\text {is }}=0 \mathrm{~V}$ to $\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\right)$.

$$
R_{O N}=\frac{V_{s w}}{I_{s w}}
$$

Fig 9. Test circuit for measuring \mathbf{R}_{ON}

$$
\mathrm{V}_{\text {is }}=0 \mathrm{~V} \text { to }\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\right)
$$

(1) $V_{C C}=4.5 \mathrm{~V}$
(2) $V_{C C}=6 \mathrm{~V}$
(3) $V_{C C}=9 \mathrm{~V}$

Fig 10. Typical $R_{O N}$ as a function of input voltage $V_{\text {is }}$

Table 7. Static characteristics for 74HC4052 ...continued
Voltages are referenced to GND (ground $=0 \mathrm{~V}$).
$V_{i s}$ is the input voltage at pins $n Y n$ or $n Z$, whichever is assigned as an input.
$V_{\text {os }}$ is the output voltage at pins $n Z$ or $n Y n$, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{I}_{\text {S(OFF) }}$	OFF-state leakage current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \\ & \mid \mathrm{V}_{\mathrm{SW}}=\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}} ; \text { see } \underline{\text { Figure } 11} \end{aligned}$				
		per channel	-	-	± 1.0	$\mu \mathrm{A}$
		all channels	-	-	± 2.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {(ON })}$	ON-state leakage current	$\begin{aligned} & V_{I}=V_{I H} \text { or } V_{I L} ; \mid V_{S W l}=V_{C C}-V_{E E} ; \\ & V_{C C}=10.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \text { see Figure } 12 \end{aligned}$	-	-	± 2.0	$\mu \mathrm{A}$
I_{CC}	supply current	$\begin{aligned} & V_{E E}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} ; \mathrm{V}_{\text {is }}=\mathrm{V}_{\mathrm{EE}} \text { or } \mathrm{V}_{\mathrm{CC}} ; \\ & \mathrm{V}_{\mathrm{OS}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{V}_{\mathrm{EE}} \end{aligned}$				
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	-	-	160.0	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V}$	-	-	320.0	$\mu \mathrm{A}$

[1] All typical values are measured at $T_{\text {amb }}=25^{\circ} \mathrm{C}$.

Table 8. Static characteristics for 74HCT4052
Voltages are referenced to GND (ground $=0 \mathrm{~V}$).
$V_{i s}$ is the input voltage at pins nYn or nZ, whichever is assigned as an input.
$V_{\text {os }}$ is the output voltage at pins $n Z$ or $n Y n$, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ [1]						
V_{IH}	HIGH-level input voltage	$\mathrm{V}_{C C}=4.5 \mathrm{~V}$ to 5.5 V	2.0	1.6	-	V
$\mathrm{V}_{\text {IL }}$	LOW-level input voltage	$\mathrm{V}_{C C}=4.5 \mathrm{~V}$ to 5.5 V	-	1.2	0.8	V
1	input leakage current	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND; $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	± 1.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {S(OFF) }}$	OFF-state leakage current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \\ & \mathrm{V}_{\mathrm{SWI}}=\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}} ; \text { see Figure 11 } \end{aligned}$				
		per channel	-	-	± 1.0	$\mu \mathrm{A}$
		all channels	-	-	± 2.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {(ON })}$	ON-state leakage current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \\ & \mathrm{V}_{\mathrm{SWI}}=\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}} ; \text { see Figure 12 } \end{aligned}$	-	-	± 2.0	$\mu \mathrm{A}$
$I_{\text {cc }}$	supply current	$\begin{aligned} & V_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} ; \mathrm{V}_{\text {is }}=\mathrm{V}_{\mathrm{EE}} \text { or } \mathrm{V}_{\mathrm{CC}} ; \\ & \mathrm{V}_{\mathrm{OS}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{V}_{\mathrm{EE}} \end{aligned}$				
		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	80.0	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-5.0 \mathrm{~V}$	-	-	160.0	$\mu \mathrm{A}$
$\Delta l_{\text {CC }}$	additional supply current	per input; $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}-2.1 \mathrm{~V}$; other inputs at V_{CC} or GND; $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to $5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	45	202.5	$\mu \mathrm{A}$
C_{1}	input capacitance		-	3.5	-	pF
$\mathrm{C}_{\text {sw }}$	switch capacitance	independent pins Y	-	5	-	pF
		common pins Z	-	12	-	pF
$\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$						
V_{IH}	HIGH-level input voltage	$\mathrm{V}_{C C}=4.5 \mathrm{~V}$ to 5.5 V	2.0	-	-	V
$\mathrm{V}_{\text {IL }}$	LOW-level input voltage	$\mathrm{V}_{C C}=4.5 \mathrm{~V}$ to 5.5 V	-	-	0.8	V
ILI 74HC_HCT4052_5	input leakage current	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND; $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	± 1.0 © ^×Р в.V. 20	$\mu \mathrm{A}$
74HC_HCT4052_5Product data sheet						

Table 8. Static characteristics for 74HCT4052 ...continued
Voltages are referenced to GND (ground $=0 \mathrm{~V}$).
$V_{i s}$ is the input voltage at pins $n Y n$ or $n Z$, whichever is assigned as an input.
$V_{\text {os }}$ is the output voltage at pins nZ or nYn, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{I}_{\text {S(OFF) }}$	OFF-state leakage current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \\ & \mathrm{V}_{\mathrm{SW}}=\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}} ; \text { see } \underline{\text { Figure } 11} \end{aligned}$				
		per channel	-	-	± 1.0	$\mu \mathrm{A}$
		all channels	-	-	± 2.0	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{S}(\mathrm{ON})}$	ON-state leakage current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \\ & \mathrm{V}_{\mathrm{SWI}}=\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}} ; \text { see } \underline{\text { Figure 12 }} \end{aligned}$	-	-	± 2.0	$\mu \mathrm{A}$
$I_{\text {cc }}$	supply current	$\begin{aligned} & V_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} ; \mathrm{V}_{\text {is }}=\mathrm{V}_{\mathrm{EE}} \text { or } \mathrm{V}_{\mathrm{CC}} ; \\ & \mathrm{V}_{\mathrm{OS}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{V}_{\mathrm{EE}} \end{aligned}$				
		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	160.0	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-5.0 \mathrm{~V}$	-	-	320.0	$\mu \mathrm{A}$
$\Delta l_{\text {CC }}$	additional supply current	per input; $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}-2.1 \mathrm{~V}$; other inputs at V_{CC} or GND; $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to $5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	220.5	$\mu \mathrm{A}$

[1] All typical values are measured at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.

$V_{\text {is }}=V_{C C}$ and $V_{\text {OS }}=V_{E E}$.
$V_{\text {is }}=V_{E E}$ and $V_{\text {os }}=V_{C C}$.
Fig 11. Test circuit for measuring OFF-state current

$V_{\text {is }}=V_{\text {CC }}$ and $V_{\text {os }}=$ open-circuit.
$\mathrm{V}_{\text {is }}=\mathrm{V}_{\mathrm{EE}}$ and $\mathrm{V}_{\mathrm{OS}}=$ open-circuit.
Fig 12. Test circuit for measuring ON -state current
[4] $t_{\text {off }}$ is the same as $t_{P H Z}$ and tpLZ.
[5] $\mathrm{C}_{P D}$ is used to determine the dynamic power dissipation (P_{D} in $\mu \mathrm{W}$).
$P_{D}=C_{P D} \times V_{C C}^{2} \times f_{i} \times N+\Sigma\left\{\left(C_{L}+C_{s w}\right) \times V_{C C}{ }^{2} \times f_{o}\right\}$ where:
$\mathrm{f}_{\mathrm{i}}=$ input frequency in MHz
$\mathrm{f}_{\mathrm{o}}=$ output frequency in MHz ;
$\mathrm{N}=$ number of inputs switching;
$\Sigma\left\{\left(C_{L}+C_{s w}\right) \times V_{C C}{ }^{2} \times f_{o}\right\}=$ sum of outputs;
$\mathrm{C}_{\mathrm{L}}=$ output load capacitance in pF ;
$\mathrm{C}_{\mathrm{sw}}=$ switch capacitance in pF ;
$\mathrm{V}_{\mathrm{CC}}=$ supply voltage in V .

Table 10. Dynamic characteristics for 74HCT4052
$G N D=0 V ; t_{r}=t_{f}=6 \mathrm{~ns} ; C_{L}=50 \mathrm{pF}$; for test circuit see Figure 15.
$V_{\text {is }}$ is the input voltage at a $n Y n$ or $n Z$ terminal, whichever is assigned as an input.
$V_{\text {os }}$ is the output voltage at a $n Y n$ or $n Z$ terminal, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ [1]						
t_{pd}	propagation delay	$\mathrm{V}_{\text {is }}$ to $\mathrm{V}_{\text {os }} ; \mathrm{R}_{\mathrm{L}}=\infty \Omega$; see Figure 13	[2]			
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	5	15	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-	4	10	ns
$\mathrm{t}_{\text {on }}$	turn-on time	\bar{E}, Sn to $V_{o s} ; R_{L}=1 \mathrm{k} \Omega$; see Figure 14	[3]			
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	41	88	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-	28	60	ns
$t_{\text {off }}$	turn-off time	\bar{E}, Sn to $V_{o s} ; R_{L}=1 \mathrm{k} \Omega$; see Figure 14	[4]			
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	26	63	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-	21	48	ns
$\mathrm{C}_{\text {PD }}$	power dissipation capacitance	per switch; $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to $\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}$	[5] -	57	-	pF
$\mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}$						
$t_{\text {pd }}$	propagation delay	$\mathrm{V}_{\text {is }}$ to $\mathrm{V}_{\text {os }} ; \mathrm{R}_{\mathrm{L}}=\infty \Omega$; see Figure 13	[2]			
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	18	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-	-	12	ns
t_{on}	turn-on time	\bar{E}, Sn to $V_{\text {os }} ; \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$; see Figure 14	[3]			
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	105	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-	-	72	ns
$\mathrm{t}_{\text {ff }}$	turn-off time	\bar{E}, Sn to $V_{o s} ; R_{L}=1 \mathrm{k} \Omega$; see Figure 14	[4]			
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	75	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-	-	57	ns

[1] All typical values are measured at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.
[2] $t_{p d}$ is the same as $t_{\text {PHL }}$ and $t_{\text {PLH }}$.
[3] $t_{o n}$ is the same as $t_{\text {PZH and }} t_{\text {PzL }}$.
[4] $t_{\text {off }}$ is the same as $t_{\text {PHz }}$ and tpLz.
[5] $\mathrm{C}_{P D}$ is used to determine the dynamic power dissipation (P_{D} in $\mu \mathrm{W}$).
$P_{D}=C_{P D} \times V_{C C}{ }^{2} \times f_{i} \times N+\Sigma\left\{\left(C_{L}+C_{s w}\right) \times V_{C C}{ }^{2} \times f_{0}\right\}$ where:
$\mathrm{f}_{\mathrm{i}}=$ input frequency in MHz ;
$\mathrm{f}_{\mathrm{o}}=$ output frequency in MHz ;
$\mathrm{N}=$ number of inputs switching;

12. Additional dynamic characteristics

Table 12. Additional dynamic characteristics
Recommended conditions and typical values; GND $=0 \mathrm{~V} ; T_{\text {amb }}=25^{\circ} \mathrm{C} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$.
$V_{i s}$ is the input voltage at pins nYn or nZ, whichever is assigned as an input.
$V_{\text {os }}$ is the output voltage at pins $n Y n$ or $n Z$, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{d}_{\text {sin }}$	sine-wave distortion	$\mathrm{f}_{\mathrm{i}}=1 \mathrm{kHz} ; \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$; see Figure 16				
		$\mathrm{V}_{\text {is }}=4.0 \mathrm{~V}(\mathrm{p}-\mathrm{p}) ; \mathrm{V}_{\mathrm{CC}}=2.25 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-2.25 \mathrm{~V}$	-	0.04	-	\%
		$\mathrm{V}_{\text {is }}=8.0 \mathrm{~V}(\mathrm{p}-\mathrm{p}) ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-	0.02	-	\%
		$\mathrm{f}_{\mathrm{i}}=10 \mathrm{kHz} ; \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$; see Figure 16				
		$\mathrm{V}_{\text {is }}=4.0 \mathrm{~V}(\mathrm{p}-\mathrm{p}) ; \mathrm{V}_{\mathrm{CC}}=2.25 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-2.25 \mathrm{~V}$	-	0.12	-	\%
		$\mathrm{V}_{\text {is }}=8.0 \mathrm{~V}(\mathrm{p}-\mathrm{p}) ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-	0.06	-	\%
$\alpha_{\text {iso }}$	isolation (OFF-state)	$\mathrm{R}_{\mathrm{L}}=600 \Omega ; \mathrm{f}_{\mathrm{i}}=1 \mathrm{MHz}$; see Figure 17				
		$\mathrm{V}_{\mathrm{CC}}=2.25 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-2.25 \mathrm{~V}$	[1] -	-50	-	dB
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	[1] -	-50	-	dB
Xtalk	crosstalk	between two switches/multiplexers; $\mathrm{R}_{\mathrm{L}}=600 \Omega$; $\mathrm{f}_{\mathrm{i}}=1 \mathrm{MHz}$; see Figure 18				
		$\mathrm{V}_{\mathrm{CC}}=2.25 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-2.25 \mathrm{~V}$	[1] -	-60	-	dB
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$; $\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	[1] -	-60	-	dB
V_{ct}	crosstalk voltage	peak-to-peak value; between control and any switch; $R_{L}=600 \Omega$; $f_{i}=1 \mathrm{MHz}$; \bar{E} or Sn square wave between V_{CC} and GND; $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}$; see Figure 19				
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	110	-	mV
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-	220	-	mV
$\mathrm{f}_{(-3 \mathrm{~dB})}$	-3 dB frequency response	$\mathrm{R}_{\mathrm{L}}=50 \Omega$; see Figure 20				
		$\mathrm{V}_{\mathrm{CC}}=2.25 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-2.25 \mathrm{~V}$	[2] -	170	-	MHz
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	[2] -	180	-	MHz

[1] Adjust input voltage $\mathrm{V}_{\text {is }}$ to 0 dBm level $(0 \mathrm{dBm}=1 \mathrm{~mW}$ into $600 \Omega)$.
[2] Adjust input voltage $\mathrm{V}_{\text {is }}$ to 0 dBm level at $\mathrm{V}_{\text {os }}$ for $1 \mathrm{MHz}(0 \mathrm{dBm}=1 \mathrm{~mW}$ into $50 \Omega)$.

Fig 16. Test circuit for measuring sine-wave distortion

13. Package outline

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A_{1}	A_{2}	A_{3}	b_{p}	c	$D^{(1)}$	$E^{(1)}$	e	H_{E}	L	L_{p}	Q	v	w	y	$\mathrm{Z}^{(1)}$	θ
mm	1.75	$\begin{aligned} & 0.25 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 1.45 \\ & 1.25 \end{aligned}$	0.25	$\begin{aligned} & 0.49 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.25 \\ & 0.19 \end{aligned}$	$\begin{gathered} 10.0 \\ 9.8 \end{gathered}$	$\begin{aligned} & 4.0 \\ & 3.8 \end{aligned}$	1.27	$\begin{aligned} & 6.2 \\ & 5.8 \end{aligned}$	1.05	$\begin{aligned} & 1.0 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 0.7 \\ & 0.6 \end{aligned}$	0.25	0.25	0.1	$\begin{aligned} & 0.7 \\ & 0.3 \end{aligned}$	8°
inches	0.069	$\begin{aligned} & 0.010 \\ & 0.004 \end{aligned}$	$\begin{aligned} & 0.057 \\ & 0.049 \end{aligned}$	0.01	$\begin{aligned} & 0.019 \\ & 0.014 \end{aligned}$	$\begin{aligned} & 0.0100 \\ & 0.0075 \end{aligned}$	$\begin{aligned} & 0.39 \\ & 0.38 \end{aligned}$	$\begin{aligned} & 0.16 \\ & 0.15 \end{aligned}$	0.05	$\begin{aligned} & 0.244 \\ & 0.228 \end{aligned}$	0.041	$\begin{aligned} & 0.039 \\ & 0.016 \end{aligned}$	$\begin{aligned} & \hline 0.028 \\ & 0.020 \end{aligned}$	0.01	0.01	0.004	$\begin{aligned} & \hline 0.028 \\ & 0.012 \end{aligned}$	0°

Note

1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN	

Fig 21. Package outline SOT109-1 (SO16)

