UTC

SWITCHMODE SERIES NPN SILICON POWER TRANSISTORS

- DESCRIPTION

The MJE13009 is designed for high-voltage, high-speed power switching inductive circuits where fall time is critical. They are particularly suited for 115 and 220 V switch mode applications such as Switching Regulators, Inverters, Motor Controls, Solenoid/Relay drivers and Deflection circuits.

FEATURES

* $V_{\text {ceo }} 400 \mathrm{~V}$ and 300 V
* Reverse Bias SOA with Inductive Loads @ $\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$
* Inductive Switching Matrix $3 \sim 12$ Amp, 25 and $100^{\circ} \mathrm{C}$ tc @ 8A, $100^{\circ} \mathrm{C}$ is 120 ns (Typ.).
* 700 V Blocking Capability
* SOA and Switching Applications Information.

■ ORDERING INFORMATION

Ordering Number		Package	Pin Assignment			Packing
$n n$	Lead Free			2	3	
MJE13009L-TA3-T	MJE13009G-TA3-T		TO-220	B	C	E
Tube						
MJE13009L-TF3-T	MJE13009G-TF3-T	TO-220F	B	C	E	Tube
MJE13009L-T3P-T	MJE13009G-T3P-T	TO-3P	B	C	E	Tube
MJE13009L-T3N-T	MJE13009G-T3N-T	TO-3PN	B	C	E	Tube

Note: Pin Assignment: B: Base
C: Collector E: Emitter

MJE13009G-TA3-T		(1) T: Tube
	(1)Packing Type (2)Package Type	(2) TA3: TO-220, TF3: TO-220F, T3P: TO-3P T3N: TO-3PN
	(3)Green Package	(3) G: Halogen Free and Lead Free, L: Lead Free

- MARKING

- ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT
Collector-Emitter Voltage		$V_{\text {CEO }}$	400	V
Collector-Emitter Voltage ($\mathrm{V}_{\mathrm{BE}}=-1.5 \mathrm{~V}$)		$V_{\text {CEV }}$	700	V
Emitter Base Voltage		$\mathrm{V}_{\text {Ebo }}$	9	V
Collector Current	Continuous	I_{C}	12	A
	Peak (Note 3)	ICM	24	A
Base Current	Continuous	I_{B}	6	A
	Peak (Note 3)	IBM	12	A
Emitter Current	Continuous	I_{E}	18	A
	Peak (Note 3)	I_{Em}	36	A
Power Dissipation	TO-220	PD	2	W
	TO-220F		2	W
	TO-3P		5.8	W
Derate above $25^{\circ} \mathrm{C}$	TO-220/TO-220F		16	$\mathrm{mW} /{ }^{\circ} \mathrm{C}$
	TO-3P		47	$\mathrm{mW} /{ }^{\circ} \mathrm{C}$
Junction Temperature		TJ	+150	${ }^{\circ} \mathrm{C}$
Storage Temperature		TSTG	$-40 \sim+150$	${ }^{\circ} \mathrm{C}$

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.
2. Pulse Test: Pulse Width $=5 \mathrm{~ms}$, Duty Cycle $\leq 10 \%$.
3. Pulse Test: Pulse Width $=300 \mu \mathrm{~s}$, Duty Cycle $=2 \%$.

- THERMAL DATA

PARAMETER		SYMBOL	RATINGS	UNIT
Junction to Ambient	TO-220/TO-220F	$\theta_{\text {JA }}$	62.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$
	TO-3P		21	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction to Case	TO-220	$\theta_{\text {Jc }}$	1.56	${ }^{\circ} \mathrm{C} / \mathrm{W}$
	TO-220F		3.13	${ }^{\circ} \mathrm{C} / \mathrm{W}$
	TO-3P		0.6	${ }^{\circ} \mathrm{C} / \mathrm{W}$

- ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS (Note)						
Collector- Emitter Sustaining Voltage	$\mathrm{V}_{\text {ceo }}$	$\mathrm{l}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{l}_{\mathrm{B}}=0$	400			V
Collector Cutoff Current $\mathrm{V}_{\text {Cbo }}=$ Rated Value	ICEV	$\begin{aligned} & \mathrm{V}_{\mathrm{BE}(\mathrm{OFF})}=1.5 \mathrm{~V}_{\mathrm{DC}} \\ & \mathrm{~V}_{\mathrm{BE}(\mathrm{OFF})}=1.5 \mathrm{~V}_{\mathrm{DC}}, \mathrm{~T}_{\mathrm{C}}=100^{\circ} \mathrm{C} \end{aligned}$			1 5	mA
Emitter Cutoff Current	$\mathrm{I}_{\text {EBO }}$	$V_{E B}=9 V_{D C}, I_{C}=0$			1	mA

ON CHARACTERISTICS (Note)

DC Current Gain	$\mathrm{h}_{\text {FE1 }}$	$\mathrm{IC}_{\mathrm{C}}=5 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}$			40	
	$\mathrm{h}_{\text {FE } 2}$	$\mathrm{I}_{\mathrm{C}}=8 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}$			30	
Current-Emitter Saturation Voltage	$\mathrm{V}_{\text {CE(SAT) }}$	$\mathrm{I}_{\mathrm{C}}=5 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=1 \mathrm{~A}$			1	V
		$\mathrm{l}_{\mathrm{C}}=8 \mathrm{~A}, \mathrm{l}_{\mathrm{B}}=1.6 \mathrm{~A}$			1.5	V
		$\mathrm{I}_{\mathrm{C}}=12 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=3 \mathrm{~A}$			3	V
		$\mathrm{IC}_{\mathrm{C}}=8 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=1.6 \mathrm{~A}, \mathrm{~T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$			2	V
Base-Emitter Saturation Voltage	$\mathrm{V}_{\mathrm{BE} \text { (SAT) }}$	$\mathrm{I}_{\mathrm{C}}=5 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=1 \mathrm{~A}$			1.2	V
		$\mathrm{I}_{\mathrm{C}}=8 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=1.6 \mathrm{~A}$			1.6	V
		$\mathrm{I}_{\mathrm{C}}=8 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=1.6 \mathrm{~A}, \mathrm{~T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$			1.5	V

DYNAMIC CHARACTERISTICS

Transition frequency	f_{T}	$\mathrm{I}_{\mathrm{C}}=500 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	4			MHz
Output Capacitance	C_{OB}	$\mathrm{V}_{\mathrm{CB}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=0.1 \mathrm{MHz}$		180		pF

SWITCHING CHARACTERISTICS (Resistive Load, Table 1)

Delay Time	$t_{\text {DLY }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{cC}}=125 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=8 \mathrm{~A} \\ & -\mathrm{I}_{\mathrm{B} 1}=\mathrm{I}_{\mathrm{B} 2}=1.6 \mathrm{~A}, \mathrm{t}_{\mathrm{P}}=25 \mu \mathrm{~s} \\ & \text { Duty Cycle } \leq 1 \% \end{aligned}$	0.06	0.1	$\mu \mathrm{s}$
Rise Time	t_{R}		0.45	1	$\mu \mathrm{s}$
Storage Time	ts		1.3	3	$\mu \mathrm{s}$
Fall Time	$\mathrm{t}_{\text {F }}$		0.2	0.7	$\mu \mathrm{s}$
Inductive Load, Clamped (Table 1, Fig. 13)					
Voltage Storage Time	$\mathrm{t}_{\text {s }}$	$\mathrm{I}_{\mathrm{C}}=8 \mathrm{~A}, \mathrm{~V}_{\text {CLAMP }}=300 \mathrm{~V}, \mathrm{I}_{\mathrm{B} 1}=1.6 \mathrm{~A}$	0.92	2.3	$\mu \mathrm{s}$
Crossover Time	t_{c}	$\mathrm{V}_{\text {be(OFF) }}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$	0.12	0.7	$\mu \mathrm{S}$

Note: Pulse Test: Pulse Wieth $=300 \mu \mathrm{~s}$, Duty Cycle $=2 \%$.

- TABLE 1. TEST CONDITIONS FOR DYNAMIC PERFORMANCE

	REVERSE BIAS SAFE OPERATING AREA AND INDUCTIVE SWITCHING	RESISTIVE SWITCHING
	Coil Data: Ferroxcube Core \#6656 GAP for $200 \mu \mathrm{H} / 20 \mathrm{~A}$ $V_{\text {CC }}=20 \mathrm{~V}$ Full Bobbin (~ 16 Turns) $\# 16$ Lcoil $^{2} 200 \mu \mathrm{H}$ $V_{\text {CLAMP }}=300 \mathrm{~V}_{\text {DC }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=125 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{C}}=15 \Omega \\ & \mathrm{D} 1=1 \mathrm{~N} 5820 \text { or Equiv. } \\ & \mathrm{R}_{\mathrm{B}}=\Omega \end{aligned}$
	OUTPUT WAVEFORMS	$\mathrm{t}_{\mathrm{R},} \mathrm{t}_{\mathrm{F}}<10 \mathrm{~ns}$ Duty Cycle = 1.0\% R_{B} and R_{C} adjusted for desired I_{B} and I_{C}

TABLE 2. APPLICATIONS EXAMPLES OF SWITCHING CIRCUITS
(

TABLE 3. TYPICAL INDUCTIVE SWITCHING PERFORMANCE

$\mathrm{I}_{\mathrm{C}}(\mathrm{A})$	$\mathrm{T}_{\mathrm{C}}\left({ }^{\circ} \mathrm{C}\right)$	$\mathrm{t}_{\mathrm{sV}}(\mathrm{ns})$	$\mathrm{t}_{\mathrm{RV}}(\mathrm{ns})$	$\mathrm{t}_{\mathrm{F} 1}(\mathrm{~ns})$	$\mathrm{t}_{\mathrm{T}_{1}(\mathrm{~ns})}$	$\mathrm{t}_{\mathrm{c}}(\mathrm{ns})$
3	25	770	100	150	200	240
	100	1000	230	160	200	320
5	25	630	72	26	10	100
	100	820	100	55	30	180
8	25	720	55	27	2	77
	100	920	70	50	8	120
12	25	640	20	17	2	41
	100	800	32	24	4	54

■ SWITCHING TIME NOTES

In resistive switching circuits, rise, fall, and storage times have been defined and apply to both current and voltage waveforms since they are in phase. However, for inductive loads which are common to SWITCHMODE power supplies and hammer drivers, current and voltage waveforms are not in phase. Therefore, separate measurements must be made on each waveform to determine the total switching time. For this reason, the following new terms have been defined.
$\mathrm{t}_{\mathrm{SV}}=$ Voltage Storage Time, $90 \% \mathrm{I}_{\mathrm{B} 1}$ to $10 \% \mathrm{~V}_{\mathrm{CEM}}$
$\mathrm{t}_{\mathrm{RV}}=$ Voltage Rise Time, $10-90 \% \mathrm{~V}_{\text {CEM }}$
$\mathrm{t}_{\mathrm{FI}}=$ Current Fall Time, $90-10 \% \mathrm{I}_{\mathrm{CM}}$
$\mathrm{t}_{\mathrm{T} \text { I }}=$ Current Tail, $10-2 \% \mathrm{I}_{\mathrm{cm}}$
$\mathrm{t}_{\mathrm{C}}=$ Crossover Time, $10 \% \mathrm{~V}_{\text {CEM }}$ to $10 \% \mathrm{I}_{\mathrm{CM}}$
An enlarged portion of the turn-off waveforms is shown in Fig. 13 to aid in the visual identity of these terms.
For the designer, there is minimal switching loss during storage time and the predominant switching power losses occur during the crossover interval and can be obtained using the standard equation from AN-222:
$P_{\text {SWT }}=1 / 2 \mathrm{~V}_{\mathrm{cc}} \mathrm{l}_{\mathrm{c}}\left(\mathrm{t}_{\mathrm{c}}\right) \mathrm{f}$
Typical inductive switching waveforms are shown in Fig. 14. In general, $\mathrm{t}_{\mathrm{RV}}+\mathrm{t}_{\mathrm{FI}} \approx \mathrm{t}_{\mathrm{c}}$. However, at lower test currents this relationship may not be valid.

As is common with most switching transistors, resistive switching is specified at $25^{\circ} \mathrm{C}$ and has become a benchmark for designers. However, for designers of high frequency converter circuits, the user oriented specifications which make this a "SWITCHMODE" transistor are the inductive switching speeds (t_{c} and t_{sv}) which are guaranteed at $100^{\circ} \mathrm{C}$.

TYPICAL CHARATERISTICS

Fig. 1 Forward Bias Safe Operating Area

Fig. 3 Forward Bias Power Derating

Fig. 2 Reverse Bias Switching Safe Operating Area

There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate $\mathrm{I}_{\mathrm{C}}-\mathrm{V}_{C E}$ limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Fig. 1 is based on $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$; $\mathrm{T}_{\text {J(PK) }}$ is variable depending on power level. Second breakdown pulse limits are valid for duty cycles to 10% but must be derated when $\mathrm{T}_{\mathrm{C}} \geq 25^{\circ} \mathrm{C}$. Second breakdown limitations do not derate the same as thermal limitations. Allowable current at the voltages shown on Fig. 1 may be found at any case temperature by using the appropriate curve on Fig. 3.
$\mathrm{T}_{\mathrm{J}(\mathrm{PK})}$ may be calculated from the data in Fig. 4. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. Use of reverse biased safe operating area data (Fig. 2) is discussed in the applications information section.

Fig. 4 Typical Thermal Response $\left[Z_{\text {өJc }}(\mathrm{t})\right.$]

- TYPICAL CHARACTERISTICS (Cont.)

Fig. 5 DC Current Gain

Fig. 7 Base-Emitter Saturation Voltage

Fig. 9 Collector Cutoff Region

Fig. 6 Collector Saturation Region

Fig. 8 Collector-Emitter Saturation Voltage

Fig. 10 Capacitance

■ RESISTIVE SWITCHING PERFORMANCE

Fig. 11. Turn-On Time

Fig. 12 Turn-Off Time

Fig. 13 Typical Inductive Switching Waveforms (at 300 V and 12 A with $\mathrm{I}_{\mathrm{B} 1}=2.4 \mathrm{~A}$ and $\mathrm{V}_{\mathrm{BE} \text { (off) }}=5 \mathrm{~V}$)

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

